
UNIVERSIDADE DE SÃO PAULO

ESCOLA DE ENGENHARIA DE LORENA

MATHEUS DE MENDONÇA CHITAN

DESENVOLVIMENTO DE UM APLICATIVO DE DETECÇÃO E

RECONHECIMENTO FACIAL

Lorena

2021

MATHEUS DE MENDONÇA CHITAN

DESENVOLVIMENTO DE UM APLICATIVO DE DETECÇÃO E

RECONHECIMENTO FACIAL

Trabalho de Conclusão de Curso apresentado ao

Bacharelado em Engenharia Física da

Universidade de São Paulo, como requisito

parcial para a obtenção do título de Bacharel em

Engenharia Física.

Orientador: Prof. Dr. Carlos Antônio Reis Pereira

Baptista

Lorena

2021

AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE
TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO,
PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE

Ficha catalográfica elaborada pelo Sistema Automatizado
da Escola de Engenharia de Lorena,

com os dados fornecidos pelo(a) autor(a)

Chitan, Matheus de Mendonça
 Desenvolvimento de um aplicativo de detecção e
reconhecimento facial / Matheus de Mendonça Chitan;
orientador Carlos Antônio Reis Pereira Baptista. -
Lorena, 2021.
 94 p.

 Monografia apresentada como requisito parcial
para a conclusão de Graduação do Curso de Engenharia
Física - Escola de Engenharia de Lorena da
Universidade de São Paulo. 2021

 1. Reconhecimento facial. 2. Detecção facial. 3.
Local binary patterns histogram. 4. Aplicativo. 5.
Python. I. Título. II. Baptista, Carlos Antônio Reis
Pereira, orient.

MATHEUS DE MENDONÇA CHITAN

DESENVOLVIMENTO DE UM APLICATIVO DE DETECÇÃO E

RECONHECIMENTO FACIAL

Trabalho de Conclusão de Curso apresentado ao

Bacharelado em Engenharia Física da

Universidade de São Paulo, como requisito

parcial para a obtenção do título de Bacharel em

Engenharia Física.

Aprovado em: 10 de dezembro de 2021

Banca Examinadora

Dr. Carlos Antônio Reis Pereira Baptista, Escola de Engenharia de Lorena

Dr. Luiz Tadeu Fernandes Eleno, Escola de Engenharia de Lorena

Dr. Durval Rodrigues Junior, Escola de Engenharia de Lorena

Acima de tudo, dedico a Deus. Pois sem Ele nada

disso seria possível.

Dedico também à minha mãe e ao meu pai, por

todo o suporte e amor dado a mim.

AGRADECIMENTO

Acima de tudo, sou grato a Deus. Sem Ele nada seria possível.

Sou eternamente grato aos meus pais, João Carlos Chitan e Marcia Aparecida de

Mendonça Chitan, pelo amor incondicional e apoio durante os meus anos de graduação. Sem

eles eu não teria chego até aqui e me tornado quem sou hoje. Amo Muito Vocês.

Sou grato ao meu orientador, Carlos Antônio Reis Pereira Baptista, por aceitar a minha

ideia de projeto, me auxiliar, indicando a direção correta que o projeto deveria seguir e pela

paciência de me corrigir quando necessário.

Agradeço aos meus amigos, Christopher Skibbe, Pedro Gabriel Rocha Gomes, Maria

Eduarda de Oliveira D’Avila Gardingo e Vitor Yang Chiba, que ao longo da graduação foram

comigo, me apoiando, incentivando e ajudando a superar as dificuldades da graduação e deste

projeto.

Agradeço ao corpo docente da Escola de Engenharia de Lorena – Universidade de São

Paulo, por tornar esse momento realidade e pelos ensinamentos passados a mim durante os anos

de graduação.

“Sirvam uns aos outros, cada um conforme o dom que recebeu, como encarregados de

administrar bem a multiforme graça de Deus.” – 1 Pedro 4:10

“E tudo quanto fizerdes, fazei-o de todo coração, como para o Senhor e não para homens,

conscientes de que recebereis do Senhor a recompensa da herança. É Cristo, o Senhor, que

estais servindo! ” – Colossenses 3:23-24

RESUMO

Dentre as inúmeras demandas decorrentes das transformações econômico-tecnológicas do

mundo atual, o desenvolvimento de novos meios segurança, que garantam maior assertividade

na identificação e verificação de pessoas, tem se mostrado cada vez mais necessário para

assegurar o bem-estar da sociedade. Este trabalho tem como objetivo, demonstrar, através da

utilização de códigos open-source e da linguagem de programação Python, o desenvolvimento

de um aplicativo de detecção e reconhecimento facial que possa ser implementado em

estabelecimentos e instituições como um meio de auxílio para a segurança. São apresentados

conceitos relacionados a natureza das imagens, visão computacional, como algoritmo Haar

Cascade e Local Binary Patterns Histogram e o processamento de imagens. Para o

desenvolvimento do aplicativo e implementação dos algoritmos, foram utilizados o framework

Bootstrap e microframework Flask e as bibliotecas OpenCV e Numpy. Em condições

semelhantes de luminosidade, para captura de imagens (para se tornarem imagens de referência)

e o reconhecimento, foi verificado que o algoritmo pode alcançar cerca de 75% de

correspondência, além de possibilitar que mais de uma pessoa possa ser verificada

simultaneamente.

Palavras-chave: Reconhecimento Facial. Detecção Facial. Local Binary Patterns Histogram.

Aplicativo. Python.

ABSTRACT

Among the several needs arising from the economic and technological changes currently

experienced by the world, the development of new and more assertive security means has

proven to be increasingly necessary to ensure the well-being of society. This work aims to

demonstrate, through the use of open-source codes and the Python programming language, the

development of a detection and facial recognition application that can be implemented in

establishments and institutions as a means of aid for security. Concepts related to the nature of

images, computer vision, such as Haar Cascade algorithm and Local Binary Patterns Histogram

and image processing, are presented. For the development of the application and

implementation of the algorithms, the Bootstrap framework and the Flask microframework and

the OpenCV and Numpy libraries were used. Under similar lighting conditions, for image

capture (to become reference images) and for recognition, it was found that the algorithm can

achieve about 75% of correspondence, in addition to allowing more than one person to be

verified simultaneously.

Keywords: Facial recognition. Face Detection. Local Binary Patterns Histogram. Application.

Python.

LISTA DE FIGURAS

Figura 1 – Linha do tempo das tecnologias de detecção e reconhecimento facial. . 19

Figura 2 – Breve resumo das ferramentas, softwares, módulos Python e frameworks

utilizados . 29

Figura 3 – Imagem com 400 pixels 30

Figura 4 – Imagem policromática (esquerda) seguida de suas componentes

monocromáticas nos canais de cor Verde, Azul e Vermelho,

respectivamente. . 31

Figura 5 – Imagem policromática (esquerda superior) seguida de suas componentes

monocromáticas nos canais Amarelo, Magenta, Ciano (inferior esquerda)

e Preto (inferior direto) . 32

Figura 6 – Imagem em seu formato policromático (esquerda) e imagem em seu

formato monocromático cinza (direita) 33

Figura 7 – Recursos (features) utilizados para a detecção de linhas, cantos, traços e

variações de intensidade de cor. 34

Figura 8 – Representação de uma parte do método para a detecção de traços, linhas

de variações de intensidade de pixel 35

Figura 9 – Recursos (features) cruzando a imagem 35

Figura 10 – Algoritmo da imagem Integral para a determinação linhas, cantos, traços

e variações de intensidade de cor. 36

Figura 11 – Representação do algoritmo Attentional Cascade 38

Figura 12 – Representação esquemática da atribuição de valores aos pixels vizinhos 39

Figura 13 – Transformação dos valores dos pixels vizinhos em binário e

transformação do binário para decimal 39

Figura 14 – Representação dos pixels finais após as transformações e a aplicação de

todo o algoritmo em uma imagem real 40

Figura 15 – Representação esquemática da formação dos histogramas 41

Figura 16 – Representação do histograma final da Figura 15. 41

Figura 17 – Organização e estrutura do aplicativo 43

Figura 18 – Código do arquivo __init__.py na íntegra 44

Figura 19 – Bibliotecas utilizadas no código forms.py 45

Figura 20 – Cadastramento do perfil de administrador 46

Figura 21 – Formulário para o login do administrador 46

Figura 22 – Formulário para o cadastramento de pessoas no banco de dados . . . 47

Figura 23 – Formulários para o encaminhamento de e-mail e recadastramento de

senhas . 47

Figura 24 – Bibliotecas utilizadas no código models.py 48

Figura 25 – Determinação de qual administrador esta logado no aplicativo 48

Figura 26 – Tabela de perfil de administrador 49

Figura 27 – Tabelas de cadastro de pessoas e de registro de reconhecimento . . . 50

Figura 28 – Bibliotecas utilizadas no código routes.py 51

Figura 29 – Constantes para a detecção facial e reconhecimento facial. 51

Figura 30 – Código de detecção facial 52

Figura 31 – Captura de imagens para o banco de dados do usuário 52

Figura 32 – Código de reconhecimento facial 53

Figura 33 – Definição do caminho para as páginas “home.html” (Início) e

“register.html” (registro) e definição da função “deletar” 54

Figura 34 – Sistema de login para os administradores 55

Figura 35 – Sistema de Logout, Reconhecimento facial, Detecção Facial e Captura de

imagens para o banco de dados de usuários 55

Figura 36 – Treinamento do algoritmo LBPH 56

Figura 37 – Página dos administradores e página de registro de reconhecimento. . 56

Figura 38 – Sistema de consulta de pessoas 57

Figura 39 – Definição do número de administradores e função de envio de e-mails

para o recadastramento de senhas 57

Figura 40 – Página de envio de e-mail e página de recadastramento de senha. . . 58

Figura 41 – Código do arquivo treinamento.py. 59

Figura 42 – Código base do arquivo layout.html I 60

Figura 43 – Código base do arquivo layout.html II 61

Figura 44 – Exemplificação do menu responsivo (responsive navbar). 62

Figura 45 – Código base do arquivo layout.html III 63

Figura 46 – Código account.html I 64

Figura 47 – Código account.html II 65

Figura 48 – Código account.html III 65

Figura 49 – Código account.html IV 66

Figura 50 – Código account.html V 66

Figura 51 – Código tabelas.html I 67

Figura 52 – Código tabelas.html II. 67

Figura 53 – Código tabelas.html III 68

Figura 54 – Código filtro.html I . . 68

Figura 55 – Código filtro.html II. . 69

Figura 56 – Código home.html . 70

Figura 57 – Código register.html I . 71

Figura 58 – Código register.html II. 71

Figura 59 – Código register.html III 72

Figura 60 – Código register.html IV 72

Figura 61 – Código login.html I . . 73

Figura 62 – Código login.html II. . 73

Figura 63 – Código login.html III . 74

Figura 64 – Código reset_request.html 75

Figura 65 – Código reset_token.html I 76

Figura 66 – Código reset_token.html II 76

Figura 67 – Atributos do código main.css I. 77

Figura 68 – Atributos do código main.css II 78

Figura 69 – Atributos do código tabelas.css I 78

Figura 70 – Atributos do código tabelas.css II. 79

Figura 71 – Atributos do código tabelas.css III 80

Figura 72 – Código run.py . 81

Figura 73 – Página “home.html” sem administradores cadastrados. 82

Figura 74 – Página “home.html” com administradores cadastrados 82

Figura 75 – Página “register.html” para o cadastramento de administradores. . . . 83

Figura 76 – Página de login de administradores 83

Figura 77 – Página “account.html” que estará disponível a todos os administradores. 84

Figura 78 – Página “tabelas.html” . 85

Figura 79 – Página “filtro.html” com apenas o nome “Matheus” selecionado . . . 85

Figura 80 – Página “reset_request.html” 86

Figura 81 – Página “reset_token.html” 86

Figura 82 – A esquerda é apresentado o detector facial e a direita o reconhecimento

facial . 87

Figura 83 – Reconhecimento facial com duas pessoas distintas 87

Figura 84 – Influência da inclinação na detecção facial com a utilização do algoritmo

Haar Cascade A . 88

Figura 85 – Influência da inclinação na detecção facial com a utilização do algoritmo

Haar Cascade B . 89

Figura 86 – Porcentagem da CPU que está sendo utilizada ao executar a função de

detecção facial do aplicativo 91

LISTA DE TABELAS

Tabela 1 – Exemplo da utilização do mapeamento objeto-relacional. 26

Sumário

1. INTRODUÇÃO. . 18

1.1. Objetivo do Trabalho 23

2. FUNDAMENTAÇÃO TEÓRICA 24

2.1. Ferramentas e Softwares Open Source 24

2.1.1. Python 24

2.1.2. Anaconda 25

2.1.3. PyCharm 25

2.1.4. Máquina Utilizada. 25

2.2. Módulos Python e Framework 26

2.2.1. Flask Microframework 26

2.2.2. Flask SQLAlchemy Framework 26

2.2.3. SQLite 27

2.2.4. Bootstrap 27

2.2.5. Numpy 28

2.2.6. OpenCV 28

2.2.7. Resumo das tecnologias utilizadas 28

2.3. Imagens . 29

2.3.1. O que são imagens 29

2.3.2. O que é uma imagem digital. 29

2.3.3. Imagens digitais policromáticas. 30

2.3.3.1. Canal de Cor – RGB (Red, Green, Blue) . . 31

2.3.3.2. Canal de Cor – CMYK (Cyan, Magenta,

Yellow, Black). 31

2.3.3.3. Conversão dos canais RGB para escala cinza 32

2.4. Algoritmo. 33

2.4.1. Classificador Haar Cascade 34

2.4.2. Adaboost. 37

2.4.3. Attentional Cascade 37

2.4.4. Reconhecimento facial LBPH (Local Binary Patterns

Histogram). 38

2.4.4.1. Pixels Vizinhos. 38

2.4.4.2. Pixel Central. 39

2.4.4.3. Histograma 40

2.4.4.4. Comparação de Imagens. 42

3. DESENVOLVIMENTO DO TRABALHO 43

3.1. Configurações 43

3.1.1. __init__.py 43

3.1.2. forms.py 45

3.1.3. models.py 48

3.1.4. routes.py 50

3.1.5. treinamento.py 59

3.1.6. Templates 60

3.1.6.1. layout.html 60

3.1.6.2. account.html 63

3.1.6.3. tabelas.html. 66

3.1.6.4. filtro.html. 68

3.1.6.5. home.html 69

3.1.6.6. register.html. 70

3.1.6.7. login.html 73

3.1.6.8. reset_request.html 74

3.1.6.9. reset_token.html. 75

3.1.7. Static . 76

3.1.7.1. main.css 77

3.1.7.2. tabelas.css 78

3.1.8. Images 80

3.2. Dataset. . 80

3.3. Trainer . 80

3.4. run.py . . 81

3.5. Aplicativo . 81

3.5.1. Páginas 81

3.5.1.1. home.html 81

3.5.1.2. register.html 82

3.5.1.3. login.html 83

3.5.1.4. account.html 84

3.5.1.5. tabelas.html e filtro.html 84

3.5.1.6. reset_request.html e reset_token.html. . . . 85

3.5.2. Detecção e Reconhecimento facial 86

4. DISCUSSÃO DE RESULTADOS. 88

 4.1. Detecção Facial. 88

 4.2. Reconhecimento Facial 89

 4.3. Processamento 90

5. CONCLUSÃO. . 92

REFERÊNCIAS . 93

18

1. INTRODUÇÃO

Com o crescente avanço da tecnologia e da dependência que o homem apresenta dessa,

novos meios segurança que garantam maiores assertividades na identificação e verificação de

pessoas, quando comparados com antigos métodos, como simples senhas, têm se mostrados

cada vez mais necessários para o assegurar o bem-estar da sociedade como um todo.

 Ao longo dos anos diversos métodos foram propostos, apesar de apenas alguns terem

se mostrado efetivos e viáveis, como os “Sistemas Biométricos”. Tais sistemas fazem uso de

características específicas de cada indivíduo, como digitais, íris e palma da mão (conhecidas

como fisiologia estática), e “características comportamentais”, como padrão de pegada,

reconhecimento de voz e reconhecimento facial, para verificar a real identidade do indivíduo

em questão. Claramente, assim como qualquer outro, tais sistemas não são 100% seguros, mas

são muitos mais confiáveis do que aqueles utilizados anos atrás, que já se tornaram obsoletos

com o avanço da tecnologia. (TASKIRAN; KAHRAMAN; ERDEM, 2020)

Entretanto, dentre todos estes mencionados acima, o que se torna de maior valia é o

reconhecimento facial, uma vez que a face humana carrega diversas informações sobre o

indivíduo, como idade, gênero, etnia, emoções e estado metal, e não necessita da cooperação

da pessoa para que seja realizado, em contraste dos demais métodos, tornando este método

excelente para aplicações de segurança. (TASKIRAN; KAHRAMAN; ERDEM, 2020)

O desenvolvimento do primeiro sistema de reconhecimento facial, como verificado na

Figura 1, que apresenta uma linha do tempo das tecnologias de detecção e reconhecimento

facial, pode ser atribuído a três protagonistas, em meados dos anos 60: Woody Bledsoe, Helen

Chan Wolf e Charles Bisson. A princípio, pelo fato do projeto ser financiado por agências de

inteligência não divulgadas, grande parte do projeto só veio à tona em 2011, quando ficou

sabido que o sistema se baseava no cálculo das distâncias entre “landmarks”, as quais eram

pontos atribuídos a determinados elementos do rosto, como olhos, nariz, sobrancelhas e muitos

outros. Tal sistema, como se pode imaginar, foi muito prejudicado pela tecnologia da época,

apesar de ainda ter sido um grande passo para provar a viabilidade do projeto. (NEC, 2020)

19

Figura 1: Linha do tempo das tecnologias de detecção e reconhecimento facial

Fonte: Autoria Própria

Já na década de 70, o projeto teve continuidade nas mãos de outro trio: Goldstein,

Harmon e Lesk. Em seu projeto, o grupo focou em estender o conceito das “landmarks” para

21 elementos faciais, os quais, dessa vez, incluíam desde os olhos, nariz e sobrancelhas até cor

de cabelo e grossura dos lábios. (SINFIC, 2008)

Entretanto, foi só na década de 80 que, realmente, houve um grande desenvolvimento

no campo do reconhecimento facial, quando Sirovich e Kirby implementaram o uso da álgebra

linear em seus algoritmos. Mais especificamente, a álgebra linear permitiu que dentro um

conjunto de imagens, fossem escolhidos quais os principais traços que definiriam melhor uma

face humana. A esse algoritmo foi dado o nome de Eigenface e foi um dos primeiros algoritmos

de detecção facial desenvolvido. (NEC, 2020)

Em 1991, uma segunda dupla de cientistas, Turk e Pentland, descobriram como

implementar um algoritmo de reconhecimento facial capaz, de forma autônoma, atribuir as

“landamrks” aos seus respectivos elementos da face, uma vez que até então era necessário

marcar manualmente as “landmarks” em cada uma das faces que se desejava reconhecer. Tal

algoritmo possibilitou uma revolução dentro do ramo, permitindo pela primeira vez que todo o

processo fosse realizado sem o auxílio humano. (SINFIC, 2008)

Entre a década de 90 e o ano 2000, a DARPA (The Defense Advanced Research Projecto

Agency) em conjunto com o NIST (National Institute of Standards and Technology) dos

20

Estados Unidos, deram início ao projeto FERET (Face Recognition Technology), como forma

de incentivar o uso do reconhecimento facial para segurança, inteligência e para aplicação da

lei. O projeto contava que a criação de um banco de dados com cerca de 2500 imagens de faces

humanas de mais de 800 pessoas. (NIST, 2020)

Já nos anos 2000, através do NIST foi criado o FRVT (Face Recognition Vendor Test),

o qual consistia em um teste que avaliava o quão bom era um algoritmo de reconhecimento

facial para aplicações civis, legais e para segurança. Os testes tinham como critérios a

velocidade, precisão, armazenamento e memória dos algoritmos e são referência dentro do ramo

até os dias de hoje. (IDEMIA, 2021)

Em 2006, mais uma vez, com o objetivo de promover um avanço na tecnologia do

reconhecimento facial, principalmente para aplicações relacionadas ao governo americano, foi

criado o FRGC (Face Recognition Grand Challenge). De forma similar ao FRVT, o FRGC

avaliava os algoritmos de reconhecimento facial mais recentes disponíveis na época. (NIST,

2020)

 Já em 2010, com o rápido avanço da tecnologia e o aumento dos processamentos dos

computadores, o reconhecimento facial passou a ser utilizado de maneiras menos

extraordinárias, estando ao alcance das pessoas. Um exemplo disso foi a implementação do

reconhecimento facial na rede social Facebook, com a finalidade de identificar pessoas nas

fotos que os usuários postavam. A princípio foi algo que trouxe à tona uma grande discussão

sobre privacidade, entretanto, não causou um grande impacto na rede social e ela continuou

crescendo e sendo utilizada mundialmente, como foi visto ao longo dos anos. (BBC, 2020)

 E a partir de 2010, o reconhecimento facial apresentou um rápido avanço e se

desenvolveu de forma muito eficiente. Porém, só em 2017 que apresentou mais um marco em

sua história, quando os celulares iPhone X, da empresa Apple, com a funcionalidade “Face ID”,

implementaram a possibilidade de desbloqueio através do reconhecimento facial. Desde então,

todos os celulares da empresa, que sucederam o iPhone X, possuem tal funcionalidade.

(SYMANOVICH, 2021)

 Disso, é possível verificar que o reconhecimento facial não é algo novo. Desde da

década de 60 vem provando a sua viabilidade através de aplicações nos mais variados locais,

como: desbloqueio de celulares, campeonatos de futebol, como lembrado por Chokshi (2019),

quando em 2001 em Tampa, na Flórida, 19 pessoas vítimas de mandados pendentes foram

21

identificadas durante a realização do 35° Super Bowl e na identificação de terrorista, como no

caso do Osama Bin Laden pelo governo americano em sua captura.

Entretanto, muitas preocupações ainda são levantadas com relação ao tema e vêm

dificultando a implementação em larga escala. Segundo Harding (2019), da revista Security,

algumas das preocupações com relação a implementação do reconhecimento facial são:

• A criação de um Big Brother State – a criação de um estado controlador que está em

constante vigilância da sociedade (falta de privacidade)

• Algoritmos que apresentem vieses sociais, principalmente com mulheres e grupos

minoritários dentro da sociedade

• Desconfiança com relação a segurança do armazenamento dos dados

• E falta de explicações adequadas e honestas sobre onde e como a tecnologia será

empregada

Tais pontos, embora sejam válidos e de real importância, não devem ser unicamente

utilizados para validar a implementação ou não dos sistemas de reconhecimento. O

reconhecimento facial, como mostrado anteriormente, também traz consigo diversas vantagens,

como as apresentadas por Marr (2019) para a Forbes:

• Utilização para encontrar pessoas desaparecidas, como crianças e idosos, ou para

encontrar pessoas suspeitas como no caso do campeonato de futebol americano em

2001.

• Implementados em aeroportos a fim de verificar a identidade dos passageiros,

automatizando processos (check in e entradas nas aeronaves), aumentando a segurança

da entrada de pessoas no país e diminuindo o contato pessoa-pessoa, como desejado por

muitos em uma situação pós pandemia, como constatado por Roll (2019)

• Implementação em lojas, a fim de substituir cartões ou dinheiro

• Utilizado para a prevenção de fraudes

Com isso, é possível verificar que o reconhecimento facial, como qualquer outro

sistema, apresenta seus prós e contras, ficando à sociedade determinar se as vantagens e

facilidades que o reconhecimento facial traz consigo superam, ou não, as suas desvantagens.

Cabe apenas ressaltar que este é um ramo extremamente versátil e que está em constante

desenvolvimento e que nos próximos anos, com o rápido avanço da tecnologia, aumento das

22

velocidades de processamento e grande tendência em sistema baseados em IA (Inteligência

Artificial), algoritmos mais refinados e bem treinados, tendem a surgir.

23

1.1. Objetivo do Trabalho

O seguinte projeto tem como objetivo o desenvolvimento de um aplicativo de detecção

e reconhecimento facial baseado na linguagem de programação Python, mediante a

implementação da biblioteca OpenCV e dos algoritmos de detecção Haar Cascade e de

reconhecimento LBPH (Local Binary Patterns Histogram).

24

2. FUNDAMENTAÇÃO TEÓRICA

Nesta seção do projeto, serão apresentadas as ferramentas, softwares, frameworks e

microframework, ambientes de desenvolvimento, bibliotecas/módulos Python e os algoritmos

utilizados para o desenvolvimento do aplicativo de reconhecimento facial em si.

2.1. Ferramentas e Softwares Open Source

Todas as ferramentas e softwares utilizados neste projeto possuem licença de código

aberto - open source, do inglês. Segundo a Open Source Initiative, ferramentas e softwares de

código aberto podem ser acessados, usados, modificados (ou não, se desejado) e distribuídos

por pessoa, sem nenhuma restrição, apenas tendo como objetivos a colaboração e

desenvolvimento da ferramenta ou software. (Open Source Initiative, [entre 1995 e 2005])

2.1.1. Python

Python, da definição, é uma linguagem de programação de alto nível, interpretada e

orientada a objeto, desenvolvida por Guido van Rossum no ano de 1991 (Python Software

Foundation, [2001]). Segundo Guido, a linguagem Python tem como objetivos:

• Ser fácil e apresentar uma linguagem intuitiva de programação;

• Ser tão eficiente quanto seus maiores competidores, como C, C++, Java, entre outros;

• Ser de código aberto, possibilitando que qualquer um possa contribuir para o

desenvolvimento da linguagem;

• Ser de fácil entendimento, assim como uma linguagem falada (no caso em específico o

inglês);

• Possibilitar um rápido desenvolvimento, sendo capaz de realizar tarefas cotidianas

(COMPUTER HISTORY MUSEUM, 2018).

Segundo o índice PYPL (2021) (PopularitY of Programming Language), a qual é obtido

através da análise de frequência com que tutorias da linguagem são procurados no Google, a

linguagem de programação mais popular, atualmente, é o Python, com um total de 29,93% das

pesquisas. Tal valor não é surpreendente, uma vez que a linguagem Python, por apresentar uma

elevada produtividade, tem chamado a atenção de desenvolvedores de longa data e de amadores

que desejam se inserir no mundo da programação.

Dentre as principais características que tornam a linguagem de programação Python tão

popular, estão elencadas:

25

• Multiplataforma - A linguagem Python é executável em qualquer sistema operacional,

seja Windows, Linux / UNIX e Macintosh, sendo necessário apenas instalar o seu

interpretador;

• Open Source - Seu código é aberto e editável, fazendo com que os próprios usuários

possam disponibilizar atualizações e ajudar o desenvolvimento da linguagem;

• Grande quantidade de bibliotecas e Frameworks - Os usuários podem utilizar ambientes

de desenvolvimento e funções pré-definidas dentro de seus códigos, a fim de agilizar o

processo de escrita e dar uma maior atenção ao problema a ser resolvido;

• Linguagem Dinâmica e Tipada - Não há necessidade em declarar qual o tipo das

variáveis que estão sendo utilizadas

Um fato curioso é que o nome Python, apesar de remeter a espécie de cobra Píton

(Python, no inglês), teve sua origem a partir do título do seriado de TV "Monty Python's Flying

Circus".

2.1.2. Anaconda

Anaconda é uma distribuição aberta da linguagem de programação Python, que

concentra uma grande variedade de módulos e pacotes, organizados de uma maneira fácil de

instalar e compatível com as diferentes plataformas, Windows, Linux / UNIX e Macintosh. A

distribuição conta com a presença de diferentes ambientes e editores, como PyCharm, Jupyter

e Spyder, e também conta com a presença de diferentes bibliotecas relacionadas ao Aprendizado

de Máquina (Machine Learining do Inglês), como TensorFlow, Scikit-Learn e PyTorch.

(Anaconda, 2021)

2.1.3. Pycharm

O ADI - Ambiente de Desenvolvimento Integrado - PyCharm (IDE - Integrated

Development Environment, do inglês) é um dos editores de texto fornecidos pela distribuição

Anaconda. O PyCharm conta com diferentes ferramentas internas, que possibilitam que o

desenvolvedor/programador mantenha o foco nos maiores problemas, enquanto o ADI monitora

o código, a fim de auxiliar, através de preenchimentos automáticos e verificação dinâmica de

erros, possíveis inconsistências no código. (JET BRAINS, [201-])

2.1.4. Máquina Utilizada

A máquina utilizada para hospedar os bancos de dado, executar os algoritmos de

detecção e reconhecimento e possibilitar a execução do aplicativo é um Lenovo ideadpad 710S

26

Plus-13IKB Signature Edition. A máquina apresenta um processador Intel(R) Core™ i7-7500U

CPU @2.70GHZ 2.90 GHz com 16,0 GB de RAM.

2.2. Módulos Python e Frameworks

2.2.1. Flask Microframework

O Flask microframework, assim com o próprio nome define, é um microframework, o

qual pode ser caracterizado como um conjunto predefinido de soluções que buscam facilitar a

resolução de problemas recorrentes no desenvolvimento de aplicações. Especificamente, o

Flask é utilizado para o desenvolvimento de aplicações web, devido a sua simplicidade, quando

comparado a Frameworks como Django e Web2py.

Pelo fato de ser um microframework, o Flask não possui, por padrão, conexões com

banco de dados, sistemas de validação ou qualquer outro tipo de funcionalidade mais robusta.

Dessa forma, a fim de utilizar o Flask de maneira completa, com sistemas de login,

cadastramento e histórico de dados, é necessário fazer uso de módulos externos ao programa

base. (Pallets, 2010)

2.2.2. Flask-SQLAlchemy Framework

Structured Query Language - SQL - é a linguagem padrão para acesso e manipulação

de banco de dados. Através desta linguagem é possível inserir, deletar, alterar, procurar e filtrar

dados e tabelas dentro de um determinado banco de dados. Entretanto, tal linguagem apresenta

sua própria sintaxe, o que dificulta a implementação desta dentro de uma aplicação na

linguagem Python. (W3SCHOOL, [200-]) (FLASK-SQLAlchemy, 2010)

Assim, é necessário a utilização do Flask-SQLAlchemy, o qual é um framework de

mapeamento objeto-relacional SQL, de código aberto sob a licença do MIT - Massachusetts

Institute of Technology. Tal framework, através do mapeamento objeto-relacional, é

responsável pela conversão de códigos da linguagem Python em linguagem SQL, a fim de que

não seja necessário a utilização de códigos SQL (SQLALchemy, [20--]). Um exemplo pode ser

verificado na tabela 1.

Tabela 1 – Exemplo da utilização do mapeamento objeto-relacional

Ação Código

Pesquisa sem a utilização do

mapeamento objetor-relacional

SELECT * FROM users WHERE EMAIL =

'test@test.com'

27

Pesquisa com a utilização do

mapeamento objeto-relacional
users.query.filter_by(email='test@test.com').first()

Fonte: Modificado de (Flask-SQLAchemy, 2010)

2.2.3. SQLite

SQLite é um módulo Python em desenvolvimento, implementado na linguagem de

programação C, que apresenta um mecanismo de banco de dados SQL transacional,

independente, sem servidor e com zero configurações. (SQLite Consortium, [entre 1995 e 2005])

Um banco de dados transacional, é composto por quatro propriedades: Atomicidade,

Consistência, Isolamento e Durabilidade. Tais propriedades garantem a validação correta dos

dados que entram e que saem do banco de dados, independente de quaisquer tipos de erros que

possam ocorrer durante a inserção ou remoção. Em palavras mais simples, todas as ações

relacionadas ao banco de dados são consideradas um sucesso total, sendo posteriormente

efetuadas, ou um fracasso total, sendo posteriormente descartadas, sem haver transações

intermediárias. (SQLite Consortium, [entre 1995 e 2005].)

O SQLite é considerado um banco de dados independente, devido as suas baixíssimas

dependências externas. Além disso, devido ao fato de não apresentar servidores, o banco é

gerado dentro do próprio sistema operacional da máquina, não tendo conexões com a internet

ou qualquer meio de comunicação.

Por fim, por apresentar zero configurações, o banco de dados SQLite não precisa ser

"instalado" antes de ser usado. Não há processos que necessitem ser configurados, iniciados ou

parados. Além de não haver a necessidade de administradores que permitam o acesso de

usuários.

2.2.4. Bootstrap

Bootstrap é um framework aberto, que faz uso de JavaScript, HTML (Hypertext Markup

Language), CSS (Cascading Style Sheets), Less (Leaner Style Sheets) e Sass (Syntactically

Awesome Style Sheets) para a elaboração de interfaces e front-ends para sites e aplicações web.

Dentre as 4 linguagens apresentadas, o JavaScript é a única considerada linguagem de

programação, sendo as demais consideradas linguagens de marcação, não interferindo no

funcionamento back-end das aplicações. Cabe ressaltar, que as linguagens Less e Sass são

utilizadas para acrescer a linguagem CSS de funcionalidades e estilos. (Bootstrap, [201-])

28

2.2.5. Numpy

Numpy é um módulo Python desenvolvido para a realização de operações matemáticas

baseadas em arranjos, vetores e matrizes, dos mais variados tipos e tamanhos. A grande

vantagem da utilização do módulo é a sua velocidade de processamento, quando comparada

com as funções nativas do Python. Tal velocidade se deve a sua implementação na linguagem

de programação C (Numpy, 2021). Dois exemplos da utilização do módulo Numpy são:

• Através da utilização dos módulos SciPy, Matplotlib e Numpy, foi possível que o Event

Horizon Telescope produzisse a primeira imagem de um buraco negro;

• O módulo Numpy, juntamente com os módulos Pandas, Scikit-learn e Scipy, foram

utilizados para a análise e confirmação da existência de ondas gravitacionais, captadas

pelo LIGO (Laser Interferometer Gravitational-Wave Observatory).

2.2.6. OpenCV

O OpenCV, traduzido para o português como Biblioteca de Código Aberto para Visão

Computacional, é um módulo Python multiplataforma, inicialmente desenvolvido pela Intel no

ano 2000, para proporcionar uma infraestrutura comum para aplicações de Visão

Computacional, acadêmicas ou comerciais. O módulo conta com mais de 2500 algoritmos

otimizados que podem ser utilizados para as mais diversas aplicações, como: tratamento de

imagens, detecção facial, reconhecimento facial, aprendizado de máquina e muitos outros.

(About OpenCV, [200-])

2.2.7. Resumo das tecnologias utilizadas

Afim de resumir e facilitar o entendimento do que foi apresentado nas seções 2.1. e 2.2.,

a Figura 2 traz uma breve contextualização de cada uma das ferramentas, softwares, módulos

Python e frameworks utilizados no desenvolvimento do aplicativo.

29

Figura 2: Breve resumo das ferramentas, softwares, módulos Python e frameworks utilizados

Fonte: Autoria Própria

2.3. Imagens

Nesta seção serão discutidos conceitos relacionados a formação de imagens

monocromáticas e policromáticas, canais de cores e o seu papel dentro da formação destas e a

conversão da escala RGB para a escala monocromática cinza.

2.3.1. O que são Imagens

Uma imagem pancromática é uma função de duas variáveis baseada na intensidade de

luz. Normalmente, a função é denotada por �ሺܯ, ܰሻ, onde ܯ e ܰ são as coordenadas espaciais

e �, na coordenada ሺܯ, ܰሻ, é proporcional ao brilho do objeto que se deseja capturar naquele

ponto. Caso a imagem seja multiespectral, �ሺܯ, ܰሻ será denotado por um vetor, no qual cada

componente indicará a intensidade luminosa do objeto, no ponto ሺܯ, ܰሻ, para o espectro

correspondente. (PETROU; PETROU, 2010)

2.3.2. O que é uma imagem digital

Uma imagem digital é uma imagem, �ሺܯ, ܰሻ, que foi discretizada tanto nas

coordenadas espaciais quanto na intensidade luminosa. As coordenadas espaciais passam a ser

representados apenas por números inteiros, como 1, 2, 3, e a intensidade luminosa entre limites

de mínimo e máximo, como de 0 a 255 ou de 0 a 100. (PETROU; PETROU, 2010)

30

Uma imagem digital monocromática se assemelha ao que é mostrada na equação (1), ou

seja, uma matriz de dimensões ܯ × ܰ. Em termos gerais, a imagem digital é formada por ܯ × ܰ pixels (picture element), onde cada pixel corresponde a um elemento da matriz.

�ሺܯ, ܰሻ = (�ሺͳ, ͳሻ ڮ �ሺͳ, ܰሻڭ ⋱ ,ܯሺ�ڭ ͳሻ ڮ �ሺܯ, ܰሻ) ሺͳሻ

Na Figura 3, à esquerda, pode ser observada uma imagem policromática, utilizada

apenas como base de referência para comparação e entendimento e, à direita, uma imagem

policromática, com 400 pixels (ʹͲ × ʹͲ) e com os elementos demonstrados da equação (1).

Figura 3: Imagem com 400 pixels

Fonte: Modificado de REVISTA GALILEU (2020)

2.3.3. Imagens digitais policromáticas

Da mesma forma que para a imagem monocromática, uma imagem digital policromática

será representada por uma imagem �ሺܯ, ܰሻ, onde as suas variáveis espaciais e de intensidade

luminosa serão discretizadas.

A grande diferença entre as imagens digitais monocromáticas e a policromáticas, como

o próprio nome já sugere, reside na quantidade de espectros luminosos, também conhecidos

como canais de cores, que formarão a imagem. Mais especificamente, para cada espectro de luz

que se deseja trabalhar, haverá uma matriz ܯ × ܰ, com as coordenadas espaciais e intensidades

luminosas do respectivo espectro (PETROU; PETROU, 2010). Dessa forma podemos escrever,

matematicamente, que a imagem final será dada de forma similar a equação (2), onde os

elementos “A” e “Z” correspondem a diferentes canais de cor.

31

�ሺܯ, ܰሻ = ቌ ሺܣ, ܼሻଵ,ଵ ڮ ሺܣ, ܼሻଵ,ேڭ ⋱ ,ܣሺڭ ܼሻெ,ଵ ڮ ሺܣ, ܼሻெ,ேቍ ሺʹሻ

2.3.3.1. Canal de Cor – RGB (Red, Green, Blue)

O sistema RGB de cores, o qual será utilizado no projeto em questão, faz uso de 3 canais

como espectros primários para a formação das imagens. Neste sistema, os pixels que compõe

as imagens apresentam componentes nas cores Vermelho (Red), Verde (Green) e Azul (Blue),

as quais possuem 256 níveis de intensidade, cada. Dessa forma, ao combinar diferentes

intensidades em diferentes pontos da tela ou monitor, é possível que uma imagem seja formada.

(ACDSystem, [2003?])

Caso fosse desejado, a imagem, �ሺܯ, ܰሻ poderia também ser representada da forma

matricial. Cada canal de cor apresentaria uma matriz de dimensões ܯ × ܰ que quando

sobrepostas resultariam na matriz da equação (3).

�ሺܯ, ܰሻ = ቌ ሺ�, �, ሻଵ,ଵܤ ڮ ሺ�, �, ڭሻଵ,ேܤ ⋱ ,�ሺڭ �, ሻெ,ଵܤ ڮ ሺ�, �, ሻெ,ேቍ ሺ͵ሻܤ

Na Figura 4 é possível verificar uma imagem na sua forma policromática, apenas com

o canal de cor verde, apenas com canal de cor azul e apenas com canal de cor vermelho.

Figura 4: Imagem policromática (esquerda) seguida de suas componentes monocromáticas

nos canais de cor Verde, Azul e Vermelho, respectivamente

Fonte: Modificado de GAY (2020)

2.3.3.2. Canal de Cor – CMYK (Cyan, Magenta, Yellow and Black)

Diferentemente do sistema de cores RGB, o sistema CMYK trabalha com 4 canais como

espectros primários para a formação da imagem, sendo esses as cores Ciano, Magenta, Amarelo

e Preto, as quais possuem apenas 100 níveis de intensidade, cada. (ACDSystem, [2003?])

32

Entretanto, a forma matricial, dada pela equação (4) para imagem �ሺܯ, ܰሻ, no sistema

CMYK é semelhante à forma matricial da imagem no sistema RBG.

�ሺܯ, ܰሻ = ቌ ሺܥ, ,ܯ ܻ, �ሻଵ,ଵ ڮ ሺܥ, ,ܯ ܻ, �ሻଵ,ேڭ ⋱ ,ܥሺڭ ,ܯ ܻ, �ሻெ,ଵ ڮ ሺܥ, ,ܯ ܻ, �ሻெ,ேቍ ሺͶሻ

Na Figura 5 é possível verificar uma figura em sua forma policromática e

respectivamente com os canais de cores Amarelo, Magenta, Ciano e Preto.

Figura 5: Imagem policromática (esquerda superior) seguida de suas componentes

monocromáticas nos canais Amarelo, Magenta, Ciano (inferior esquerda) e Preto (inferior

direta)

Fonte: Modificado de GAY (2020)

2.3.3.3. Conversão dos canais RGB para escala cinza

Presentes nas mais diversas áreas do conhecimento, as cores têm sido utilizadas há anos

para nos expressar e entender o mundo em que vivemos. Entretanto, quando algoritmos

computacionais são requeridos, é desejável que os múltiplos canais de cores sejam substituídos

por um único cinza.

As duas principais razões pela escolha de um único canal cinza, para este projeto, foram:

velocidade de processamento e algoritmo utilizado.

• Velocidade de processamento - Se supormos que seja necessário um tempo � para o

processamento de qualquer tipo de canal, será necessário um tempo ݊ × � para uma

imagem de ݊ canais. Porém, se estivermos trabalhando com um banco de dados com

33

milhões de imagens, o tempo necessário será ݉ × ݊ × �, onde ݉ é o número de

imagens. Assim, fica claro, que o tempo de processamento será ݊ vezes mais rápido

para um único canal cinza, quando comparado com imagens que apresentem

diferentes canais de cores.

• Algoritmo utilizado - O algoritmo utilizado para o treinamento das imagens,

necessita que estas apresentem um único canal (cinza), a fim de facilitar as operações

matemáticas que serão detalhadas nas seções seguintes.

O algoritmo matemático utilizado para a transformação das imagens policromáticas, do

sistema RGB para a escala cinza pode ser verificado na equação (5), onde ܻ representa a cor do

pixel na escala cinza e R, G e B as componentes Vermelho, Verde e Azul, respectivamente, do

pixel antes da transformação. (OpenCV, [201-]) ܻ = Ͳ.ʹͻͻ ⋅ � + Ͳ.ͷͺ͹ ⋅ � + Ͳ.ͳͳͶ ⋅ ሺͷሻ ܤ

Na Figura 6, à esquerda, é possível verificar uma imagem policromática no sistema RGB

e, à direita, uma imagem na escala cinza, após passar pelo algoritmo demonstrado pela equação

5.

Figura 6: Imagem em seu formato policromático (esquerda) e imagem em seu formato

monocromático cinza (direita)

Fonte: Modificado de GAY (2020)

2.4. Algoritmos

Nesta seção serão discutidos alguns dos algoritmos utilizados para a detecção e

reconhecimento facial que serão, posteriormente, implementados na forma de códigos na

linguagem Python, para o desenvolvimento de um aplicativo.

34

2.4.1. Classificador Haar Cascade

Um classificador Haar Cascade é um algoritmo de detecção de objetos, comumente

utilizado para a detecção de traços faciais, em imagens ou vídeos em tempo real. O algoritmo

foi proposto por Viola e Jones em seu trabalho "Rapid Object Detection using a Boosted

Cascade of Simple Features", publicado na Conferência de Visão Computacional e

Reconhecimento de Padrões em 2001.

O método consiste na utilização de recursos, do inglês features, os quais são mostrados

na Figura 7 para a detecção de linhas, cantos, traços e variações da intensidade de cor, que

possam representar o objeto em questão. (VIOLA; JONES, 2001)

Figura 7: Recursos (features) utilizados para a detecção de linhas, cantos, traços e

variações de intensidade de cor.

Fonte: Autoria Própria

Cada tipo de recurso é responsável por verificar a existência de uma característica na

imagem. Da Figura 7, o recurso "A" é responsável por verificar a presença de linhas e traços na

vertical, o recurso "B” por verificar na horizontal, o "C" e o "E" por regiões que estejam

separados por regiões mais escuros ou claras, respectivamente, e o "D" por traços na diagonal.

Tais recursos, ao passarem pela imagem, realizam as somas das intensidades dos pixels

contidos em cada um dos retângulos. Posteriormente, a soma dos brancos é subtraída da soma

dos pretos e, só então, é verificado se o valor resultante é próximo ou não de 1 (valor arbitrário

35

utilizado para o entendimento do método). Caso o valor seja próximo de 1, há um indicativo

que há uma grande diferença entre os pixels dos dois retângulos, o que significa que há um

traço separando os dois. Abaixo, na Figura 8 há uma representação esquemática desta parte do

método e na Figura 9 uma representação de como os recursos cruzam a imagem. (VIOLA;

JONES, 2001)

Figura 8: Representação de uma parte do método para a detecção de traços, linhas de

variações de intensidade de pixel.

Fonte: Autoria Própria

Figura 9: Recursos (features) cruzando a imagem

Fonte: Modificado de POPUP PAINTING (2018)

36

Entretanto, cruzar uma imagem com a utilização dos recursos é computacionalmente

custoso, uma vez que é necessário iterar por cada pixel mais de uma vez. Dessa forma, foi

implementado um algoritmo chamado de imagem integral, onde o valor de cada pixel da

imagem integral será a soma dos valores dos pixels posicionados acima e à esquerda da imagem

original (VIOLA; JONES, 2001). Abaixo, na equação (6), é possível verificar o conceito da

imagem integral de forma matemática.

�′ሺ݅′, ݆′ሻ = { �ሺͳ,ͳሻ, ݅′, ݆′ = ͳ,ͳ∑ ∑ �ሺ݅, ݆ሻ௝′
௝=ଵ௜′

௜=ଵ , ݅′, ݆′ ≠ ͳ,ͳ (6)

Onde �ሺ݅, ݆ሻ representa o pixel da imagem original, �′ሺ݅′, ݆′ሻ representa o pixel da

imagem integral, ݅ e ݆ a posição do pixel na imagem original e ݅′ e ݆′ a posição do pixel na

imagem integral.

Tal algoritmo possibilita que a quantidade de operações matemáticas seja reduzida, uma

vez que, ao formar a imagem integral, os recursos que cruzaram a imagem não necessitarão

realizar a soma de ݊ valores de intensidade de pixels, como mostrados na Figura 8, mas apenas

a soma de 4 valores, os quais estão posicionados nas extremidades dos recursos. Na Figura 10

é possível verificar a soma sendo realizada na imagem integral. (VIOLA; JONES, 2001)

Figura 10: Algoritmo da imagem Integral para a determinação linhas, cantos, traços e

variações de intensidade de cor.

Fonte: Autoria Própria

37

2.4.2. Adaboost

É de grande importância ressaltar que tal método, para um funcionamento adequado,

necessita de imagens positivas, que apresentem o que se deseja encontrar, e imagens negativas,

que não apresentem o que se deseja encontrar. Um exemplo prático seria uma face humana

como positiva e um pássaro como negativa, no contexto de detecção facial.

Dessa forma, ao utilizar o método descrito na seção 2.4.1, é possível imaginar que

muitos dos recursos (features) utilizados não detectem traços relevantes nas imagens positivas,

ou que detectem traços errôneos nas imagens negativas, ou que até mesmo não sejam úteis para

a detecção de objetos.

Assim, a fim de solucionar tal problema, é utilizado um algoritmo de

aprendizado/técnica de aprimoramento (do inglês, Learning Algorithm/Boosting Technique)

conhecido como AdaBoost. Tal algoritmo/técnica é responsável por, através da criação de Weak

Learners, filtros fracos no português, determinar os recursos que melhor representam o objeto

de se deseja detectar. Cabe ressaltar que no algoritmo/técnica muitos dos recursos utilizados

previamente são excluídos, assim mantendo apenas aqueles que trazem resultados relevantes

para a detecção. (VIOLA; JONES, 2001)

2.4.3. Attentional Cascade

A partir dos recursos que melhor representam os objetos que se deseja detectar, advindos

do algoritmo de aprendizado/técnica de aprimoramento AdaBoost, foi proposto um terceiro

algoritmo, a fim de diminuir os esforços computacionais, conhecido como Attentional Cascade.

Tal algoritmo, como o próprio nome sugere, funciona em forma de cascata, onde é

necessário que todos os procedimentos intermediários apresentem respostas verdadeiras, para

que a resposta final seja verdadeira. Caso alguma das respostas intermediárias seja falsa, o

algoritmo para de ser executado e passa para o próximo conjunto de pixels na imagem. A Figura

11 exemplifica a ideia principal do algoritmo.

Em mais detalhes, o método se baseia na utilização de diferentes recursos, em uma

ordem determinada, a fim de verificar se em um conjunto de pixels há ou não traços que se

assemelhem ao objeto que se deseja detectar. Inicialmente são utilizados recursos mais simples,

como os exemplos "A" e "B" da Figura 7. Caso não sejam detectados traços relevantes, o

algoritmo para de ser executado e passa para o próximo conjunto de pixels. Agora, caso sejam

detectados traços relevantes, recursos mais complexos, como os exemplos "C", "D" e "E", são

38

utilizados para verificar mais a fundo a semelhança com o objeto que deseja ser encontrado.

(VIOLA; JONES, 2001)

Caso todos os recursos retornem respostas verdadeiras para a semelhança com o objeto

que se deseja detectar, o algoritmo fornece uma resposta final verdadeira para a detecção do

objeto.

Figura 11: Representação do algoritmo Attentional Cascade

Fonte: Autoria Própria

2.4.4. Reconhecimento facial LBPH – Local Binary Patterns Histogram

O algoritmo Local Binary Patterns Histogram foi introduzido no contexto de

reconhecimento facial no ano de 2004 por Ahonen, Hadid e Pietikäinen em seu trabalho “Face

Recognition with Local Binary Patterns” (ROSEBROCK, 2021). Em termos gerais, o algoritmo

consiste na utilização de histogramas para o armazenamento do número de vezes que uma

determinada intensidade está presente na imagem. Abaixo será explicado o método em mais

detalhes.

2.4.4.1. Pixels Vizinhos

Primeiramente, a fim de utilizar o algoritmo é necessário que a imagem seja convertida

em escalas de cinza através da utilização da equação (5), apresentada na seção 2.3.3.3.

Em seguida, para cada pixel, já na escala cinza, são selecionados 8 pixels vizinhos, pelos

quais se deseja que o algoritmo itere. Tal iteração consiste na comparação do valor do pixel

central com os pixels vizinhos. Caso o valor do pixel central seja maior ou igual ao do pixel

vizinho em análise, é atribuído o número 1 a esse vizinho. Caso o valor do pixel central seja

39

menor, é atribuído o número 0 ao vizinho. Tais valores (0 e 1) serão utilizados posteriormente

para a formação de um número binário. Abaixo, na Figura 12, pode ser verificado um exemplo

esquemático desse processo. (ROSEBROCK, 2015)

Figura 12: Representação esquemática da atribuição de valores aos pixels vizinhos.

Fonte: Autoria Própria

2.4.4.2. Pixel Central

Para a determinação do valor associado ao pixel central, o qual é o pixel que desejamos

determinar desde o início do algoritmo, os pixels vizinhos serão enumerados de 0 a 7 e

percorridos no sentido horário ou anti-horário. O importante é manter o mesmo padrão para

todos os pixels da imagem. Com isso, os valores de 0 e 1 serão concatenados formando um

número binário de 8-bits que será transformado em decimal, retornando o valor do pixel central.

Abaixo, na Figura 13, é possível verificar o processo descrito acima e na Figura 14 a imagem

final após as transformações. (ROSEBROCK, 2015)

Figura 13: Transformação dos valores dos pixels vizinhos em binário e transformação do

binário para decimal

Fonte: Autoria Própria

40

Figura 14: Representação dos pixels finais após as transformações e a aplicação de todo o

algoritmo em uma imagem real

Fonte: Modificado de SOUZA (2019)

2.4.4.3. Histograma

Com a imagem devidamente transformada, como verificado na Figura 14, a mesma será

dividida em 64 sub-regiões. Para cada sub-região será gerado um histograma contendo as

intensidades dos pixels presentes naquela porção da imagem e a frequência com que cada

intensidade se apresenta. E ao final, todos os 64 histogramas serão concatenados em um único

histograma, o qual conterá a frequência com que cada intensidade de pixel se apresenta. Nas

Figuras 15 e 16 é possível verificar um modelo esquemático do processo e o histograma final

da Figura 14. (SERENGIL, 2020)

41

Figura 15: Representação esquemática da formação dos histogramas.

Fonte: Modificado de SOUZA (2019)

Figura 16: Representação do histograma final da Figura 15.

Fonte: Modificado de SOUZA (2019)

Como foi dito anteriormente, o histograma final é uma concatenação dos 64 histogramas

individuais. Dessa forma, o histograma final não combinará os resultados individuais, mas irá

ordená-los um ao lado do outro. Tal ordenamento explica, com clareza, o motivo do eixo �, do

histograma da Figura 16, possuir 16.384 (͸Ͷ retângulos × ʹͷ͸ intensidade) valores. (OpenCV,

[201-])

42

2.4.4.4. Comparação de Imagens

Uma vez realizado o processo descrito na seção 2.4.4.3, os histogramas finais serão

armazenados em um arquivo do tipo YML, que funcionará como um banco de dados para

futuras comparações, que terão como finalidade determinar a semelhança entre uma nova

imagem e as utilizadas para treinar o algoritmo.

Tais comparações se darão mediante a entrada de uma nova imagem, a qual passará por

todos os processos e métodos descritos acima, a fim de também gerar um novo histograma que

será comparado com os presentes no banco de dados, através da equação (7).

ܦ = √ሺ݌଴ − ଴ሻଶݍ + ሺ݌ଵ − ଵሻଶݍ + ڮ + ሺ݌௜ − ௜ሻଶݍ = √∑ሺ݌௜ − �௜ሻଶݍ
௜=଴ ሺ͹ሻ

Onde ݌ e ݍ representam, respectivamente, as frequências de cada um dos índices ݅ dos

histogramas 1 (nova imagem) e 2 (banco de dados) e ܦ a distância euclidiana entre os dois

histogramas. Quanto maior o valor de ܦ, menor será a correspondência entre os histogramas,

indicando que a nova imagem não corresponde a determinada imagem armazenada no banco

de dados.

43

3. DESENVOLVIMENTO DO TRABALHO

Esta seção tem como objetivo apresentar e explicar os resultados do desenvolvimento

do aplicativo para a detecção e reconhecimento facial e criação de um banco de dados para

futuras consultas.

Afim de facilitar o entendimento e compreensão dos resultados, a organização/estrutura

do aplicativo de reconhecimento facial desenvolvido é mostrado na Figura 17. A partir dessa

figura, será explicado cada um dos diretórios e suas funções dentro do aplicativo.

Figura 17: Organização e estrutura do aplicativo

Fonte: Autoria Própria

3.1. Configurações

O diretório de Configurações é responsável por armazenar os códigos e funcionalidades

que possibilitaram a detecção e reconhecimento facial, a criação das páginas HTML (criação

das páginas web), a formatação das páginas web (CSS) e a utilização do banco de dados

(site.db).

3.1.1. __init__.py

O código presente no arquivo __init__.py, apesar de ser pequeno, é responsável por

configurar a aplicação do microframework Flask, configurar a aplicação do banco de dados

44

SQLite e do framework SQLAlchemy e possibilitar a encriptação da senha cadastrada pelo

administrador. Na Figura 18 é possível verificar o código do arquivo __init__.py na íntegra.

Figura 18: Código do arquivo __init__.py na íntegra

Fonte: modificado de SCHAFER, [201-]b; [201-]c; [201-]d; [201-]e

Linhas 1 e 2: foram importados, respectivamente, o microframework Flask e

SQLAlchemy, que serão responsáveis por criar a aplicação web e por gerenciar o banco de

dados, como previamente explicados nas seções 2.2.1 e 2.2.2.

Linhas 3, 4 e 5: são importados, respectivamente, as bibliotecas/módulo flask_bcrypt,

flask_login e flask_mail. A biblioteca flask_bcrypt é responsável por encriptar e descriptar a

senha utilizada pelo administrador, a fim de que a senha não possa ser verificada visualmente

no banco de dados por qualquer um. A biblioteca flask_login é responsável por implementar à

45

aplicação um sistema de login e logout fácil e rápido, além de permitir que verificações sejam

utilizadas para o acesso a determinadas pastas no aplicativo. E a biblioteca flask_mail é

responsável por mediar os processos de envio de e-mail no caso do esquecimento da senha

utilizada.

Linhas 8 e 9: são criados, respectivamente, a aplicação Flask e a chave secreta (Secret

Key), que não permite que os dados utilizados na sessão sejam alterados por malwares ou

sistemas externos.

Linhas 12, 13 e 16: são criados, respectivamente, o banco de dados SQLite, os métodos

de interação com o banco e os métodos de encriptação para as senhas.

Linhas 19 a 21 e 24 a 29: são incorporados ao código, respectivamente, o sistema de

login, com suas validações e o sistema de encaminhamento de e-mail. No lugar dos traços

vermelhos, o administrador deve inserir o seu e-mail (Gmail) e senha.

3.1.2. forms.py

No arquivo forms.py é possível verificar os formulários, com suas respectivas

validações, utilizados para o cadastramento do administrador, login do administrador,

cadastramento de pessoas no banco de dados, encaminhamento de e-mail e recadastramento de

senhas. Na Figura 19 é possível verificar as bibliotecas utilizadas para a criação dos formulários.

Figura 19: Bibliotecas utilizadas no código forms.py

Fonte: modificado de SCHAFER, [201-]b

Para a construção dos formulários foi utilizada a biblioteca flask_wtf, a qual possibilita

que diferentes validações sejam executadas ao submeter um novo formulário. Um exemplo

prático dessas validações se dá no cadastramento de um nome que já é existente no banco de

dados. O formulário exibe uma mensagem de erro, indicando que o nome já foi utilizado e até

que a pessoa não altere, o formulário não será enviado para o cadastramento. Cabe ressaltar que

o nome é apenas um dos parâmetros de verificação, sendo assim, e-mail, número, senhas ou

qualquer tipo de parâmetro pode ser utilizado como parâmetro de validação.

Na Figura 20 é possível verificar os formulários escritos para o cadastramento dos

administradores e suas respectivas validações

46

Figura 20: Cadastramento do perfil de administrador

Fonte: modificado de SCHAFER, [201-]b

Linhas 7 a 15: É possível verificar a construção do formulário para o cadastramento do

administrador. Nele é requerido que seja fornecido um nome de usuário (nome_administrador),

um e-mail para login (email_administrador), uma senha (senha_administrador) e uma

confirmação da senha (confirmar_senha).

Linhas 18 a 26: É verificado se o nome e e-mail do administrador é existente no banco

de dados. Caso afirmativo para qualquer um dos casos, é pedido que seja trocado o parâmetro

em questão, até que o escolhido não esteja presente no banco. Outro ponto que, apesar de não

aparecer junto as validações, funciona como uma é a confirmação de senha (linha 13), a qual

impossibilita que o usuário seja cadastrado caso as senhas sejam diferentes.

Nas Figuras 21, 22 e 23, é possível encontrar os formulários de login do administrador,

cadastramento de pessoas no banco de dados e encaminhamento de e-mail para o recadastro da

senha do administrador.

Figura 21: Formulário para o login do administrador

Fonte: modificado de SCHAFER, [201-]b

47

Linhas 30 a 35: Após o cadastramento do número de administradores desejados, a opção

de cadastramento será retirada e no lugar será disponibilizado a opção de login, na qual será

requerido o e-mail (email_administrador) do usuário e senha (senha_administrador). Caso um

dos parâmetros esteja incorreto, não será possível efetuar o login e a pessoa será redirecionado

novamente para página de login.

Figura 22: Formulário para o cadastramento de pessoas no banco de dados

Fonte: Autoria Própria

Linhas 38 a 52: Com o login efetuado pelo administrador, o mesmo será redirecionado

para uma página de cadastramento de pessoas e treinamento do algoritmo de reconhecimento.

No formulário de cadastramento de pessoas é requerido que o administrador atribua um nome

(nome_usuario) e número (numero_usuario) a essa pessoa. Cada nome e número deve ser único,

de forma que o sistema possa reconhecer diferentes pessoas. O nome é utilizado para ser

disposto na foto final da pessoa e o número para o treinamento do algoritmo.

Figura 23: Formulários para o encaminhamento de e-mail e recadastramento de senhas

Fonte: modificado de SCHAFER, [201-]b

48

Linha 55 a 64: Caso o administrador esqueça a senha do login, foi criado um formulário

que possibilita o envio de um link para o recadastramento. Neste formulário é necessário que o

administrador informe apenas o e-mail utilizado no registro do perfil. Caso o e-mail informado

não esteja presente no banco de dados, o formulário exibirá um erro e o e-mail não será enviado.

Linha 67 a 71: No formulário de recadastramento é necessário que o administrador

informe a sua nova senha e a confirmação da nova senha. Feito isso, o administrador será

redirecionado para a página de login, onde poderá efetuar o mesmo.

3.1.3. models.py

No arquivo models.py é possível encontrar todos os códigos relacionados a criação de

tabelas dentro do banco de dados SQLite. Essas tabelas são diferentes instâncias dentro do

banco de dados, responsáveis pelo armazenamento de um conjunto de dados específicos.

A primeira tabela é relacionada ao armazenamento dos perfis dos administradores. A

segunda tabela é relacionada ao cadastro das pessoas no banco de dados, a fim de serem

reconhecidas posteriormente pelo sistema. E a terceira é relacionada ao armazenamento dos

nomes das pessoas que foram reconhecidas, a data e hora em que foram reconhecidas, como

um registro de entrada e saída. A seguir é possível verificar os códigos escritos, Figuras 24, 25,

26, 27 e 28, e suas respectivas explicações.

Figura 24: Bibliotecas utilizadas no código models.py

Fonte: modificado de SCHAFER, [201-]c

 Para a criação das tabelas foi utilizado o banco de dados SQLite, localizado na própria

máquina, no arquivo site.db, assim como o SQLAlchemy, que é responsável por mediar a entra,

saída e alteração do banco.

 Para a determinação da data e hora e criação de um token/link aleatório, foram utilizadas

as bibliotecas datetime e itsdangerous, respectivamente. E a fim de determinar quando e qual

administrador esta logado ao aplicativo, foi utilizado a biblioteca flask_login, novamente.

Figura 25: Determinação de qual administrador esta logado no aplicativo

Fonte: modificado de SCHAFER, [201-]d

49

A fim de o sistema de login funcionar corretamente, é necessário que a aplicação

entenda quando e qual administrador está logado ao sistema. Para isso é utilizado a função

load_user, a qual, com base no id do usuário, determina qual dos usuários está logado, e

consequentemente, quando está logado.

Figura 26: Tabela de perfil de administrador

Fonte: modificado de SCHAFER, [201-]c; [201-]e

Linhas 11 a 17: foi criado a tabela User com os seguintes parâmetros: id,

nome_administrador, email_administrador e senha_administrador. O id, do inglês,

identification, é um valor inteiro e único, atribuído automaticamente a cada um dos

administradores conforme se cadastram no sistema. O nome_administrador,

email_administrador e senha_administrador vem diretamente do formulário

RegistrationForm apresentado na Figura 20. Assim, os valores fornecidos nos formulários

serão salvos dentro da tabela User.

Linhas 19 a 21: foi criado um token/link aleatório, com base na chave secreta definida

no arquivo __ini__.py, que será responsável pelo redirecionamento até a página de

recadastramento de senha, caso ela seja esquecida. O token/link terá uma duração de 1800

segundos, ou 30 minutos, que será verificada pelo código das linhas 24 a 30. Caso o tempo seja

excedido, o token/link se tornará inválido, sendo necessário gerar um novo.

Linhas 36 a 39: foi criada a tabela Cadastro, responsável por armazenar os parâmetros

id, nome_usuario e numero_usuario. Da mesma forma que para a tabela User, os parâmetros

50

da tabela Cadastro, são advindos dos formulários apresentado na seção 3.1.2, mais

especificamente do formulário CadastroForm apresentado na Figura 22.

Figura 27: Tabelas de cadastro de pessoas e de registro de reconhecimento

Fonte: modificado de SCHAFER, [201-]c

E por último, foi criado uma tabela chamada Registro, onde são inseridos os nomes de

todas as pessoas que são reconhecidas pelo algoritmo, juntamente com a hora e dia em que

foram reconhecidas.

3.1.4. routes.py

No arquivo routes.py é possível encontrar todos os códigos responsáveis pelas

funcionalidades da aplicação, como: o efetivo cadastramento das pessoas no banco de dados, o

cadastramento dos administradores, treinamento do algoritmo de reconhecimento, acesso ao

registro de reconhecimento, funcionamento do sistema de login e recadastramento de senhas.

Todos esses códigos são mostrados das Figuras 28 a 40 e são seguidos de suas respectivas

explicações.

Linhas 1 a 12: foram importadas as bibliotecas OpenCV, Numpy, os, datetime e Pillow

(PIL), as variáveis do código __init__.py (seção 3.1.1), os formulários de cadastro e recadastro

(seção 3.1.2), as tabelas do banco de dados (seção 3.1.3), sistema de login e sistema de envio

de e-mail.

51

Figura 28: Bibliotecas utilizadas no código routes.py

Fonte: modificado de SCHAFER, [201-]b; [201-]c; [201-]d; [201-]e

Figura 29: Constantes para a detecção facial e reconhecimento facial

Fonte: Autoria própria

Ao contrário do que se parece ao explicar, o algoritmo de detecção facial, apresentado

na seção 2.4, é computacionalmente custoso, necessitando de um grande tempo e uma grande

quantidade de imagens para o seu treinamento adequado.

Dessa forma, a fim de não serem necessárias múltiplas execuções do algoritmo, uma

para cada imagem, os desenvolvedores da biblioteca OpenCV disponibilizaram um arquivo

XML, com o algoritmo pré-treinado, o qual pode ser implementado no código como visto nas

linhas 17, 18 e 19.

Entretanto, diferentemente do algoritmo de detecção facial, o algoritmo de

reconhecimento deve ser executado múltiplas vezes, a fim de gerar um histograma para cada

imagem fornecida. Assim, com o intuito de executá-lo eficientemente, os desenvolvedores da

biblioteca OpenCV, disponibilizaram códigos simples, como os verificados nas linhas 15 e 16,

que podem ser implementados facilmente dentro do código.

52

Figura 30: Código de detecção facial

Fonte: Autoria própria

Linhas 23 a 37: foi definida a função “deteccao”, a qual é responsável por detectar as

faces presentes em um vídeo ou imagem. Esta função foi idealizada com o objetivo de verificar

a posição da câmera antes da função de captura, pois imagens que estejam com uma qualidade

ruim ou com objetos cobrindo parcialmente o rosto, podem atrapalhar o reconhecimento.

Figura 31: Captura de imagens para o banco de dados do usuário

Fonte: Autoria própria

Linhas 40 a 57: foi escrita a função “captura_banco_dados”, a qual é responsável por

capturar diversas imagens da face, a fim de gerar uma quantidade significativa de histogramas

53

para comparações. Estas imagens são armazenadas dentro da pasta Dataset, apresentada na

Figura 17, da seguinte forma: User.número.contador.jpg. O nome User apenas indica que a

foto é relacionada ao banco de dados de usuários, enquanto o número é relacionado ao número

fornecido pelo administrador no formulário CadastroForm (seção 3.1.2) e o contador registra

o número da imagem que foi tirado.

Figura 32: Código de reconhecimento facial

Fonte: Autoria própria

Linhas 60 a 89: foi definida a função “gen_frames”, a qual é responsável por: gerar um

novo histograma para cada face detectada na imagem, comparar os novos histogramas com os

histogramas armazenados no arquivo Trainer.yml, armazenar na tabela Registro (seção 3.1.3)

o nome da pessoa, a data e a hora em que foi reconhecida (caso ela seja conhecida) e escrever

na imagem o nome e a percentagem de semelhança com a pessoa do banco de dados. Em outras

palavras, a função “gen_frames” é responsável por uma parcela relativamente grande e

importante da aplicação no geral.

54

Figura 33: Definição do caminho para as páginas “home.html” (Início) e “register.html”

(registro) e definição da função “deletar”

Fonte: modificado de SCHAFER, [201-]b; [201-]c

Linhas 93 a 96: foram definidos dois caminhos para o acesso a página inicial (Home).

Um deles é com a utilização da URL http://127.0.0.1:5000/ e o outro pela URL

http://127.0.0.1:5000/home. Os números 127.0.0.1:5000 são referentes ao localhost, ou servidor

local em português, criado pelo microframework Flask.

Linhas 99 a 113: o usuário pode ter acesso a página de cadastro de administrador (URL

http://127.0.0.1:5000/register), onde, com o formulário RegistrationForm (seção 3.1.2),

poderá se registrar como um administrador, tendo os dados salvos na tabela User (seção 3.1.3).

Cabe ressaltar que o número de administradores pode ser limitado.

Linhas 116 a 122: o administrador, caso desejado, tem a possibilidade de deletar o seu

próprio registro do banco de dados User, apresentado na Figura 26.

55

Figura 34: Sistema de login para os administradores

Fonte: modificado de SCHAFER, [201-]d

Linhas 125 a 139: foi implementado o sistema de login para os administradores. Este

sistema faz uso da tabela User a fim de verificar a existência do e-mail e senha que foram

inseridos no formulário LoginForm, na página de login. Caso o e-mail e senha estejam

corretos, o administrador é direcionado a página account, onde poderá cadastrar novas usuários

no banco de dados.

Figura 35: Sistema de Logout, Reconhecimento facial, Detecção Facial e Captura de imagens

para o banco de dados de usuários

Fonte: Autoria Própria

Linhas 141 a 144: é realizado o sistema de logout do administrador. O sistema é

relativamente simples, uma vez que é utilizada a biblioteca flask_login apresentada na Figura

16.

Linhas 147 a 149: é definida a resposta mais importante do aplicativo, o reconhecimento

facial. Tal resposta, pelo fato de ser em formato de vídeo, assim como as demais que serão

56

definidas logo abaixo, necessita da utilização do Response, o qual permitirá que as imagens

que formam o vídeo sejam atualizadas constantemente. E por último, dentro do Response é

colocada a função de vídeo que se deseja utilizar, no caso a função “gen_frames”.

Linhas 152 a 154 e 157 a 159: são definidas, respectivamente, as aplicações das funções

“deteccao” e “captura_banco_dados”, definidas nas Figuras 30 e 31.

Figura 36: Treinamento do algoritmo LBPH

Fonte: Autoria própria

Linhas 162 a 166: foi definida a função que possibilita o treinamento o algoritmo LBPH,

explicado na seção 2.4.4. Entretanto, diferentemente das funções de vídeos mencionadas acima,

as quais possuem suas respostas apresentadas na própria aplicação, o código do treinamento é

executado diretamente no console Python, não sendo mediado pelo microframework Flask. O

principal problema que isso gera, é a necessidade de reiniciar a aplicação após a execução do

código, uma vez que o arquivo Trainer.yml não será atualizado na mesma sessão.

Figura 37: Página dos administradores e página de registro de reconhecimento

Fonte: modificado de SCHAFER, [201-]c

 Linhas 169 a 179 e 182 a 187: são definidas, respectivamente, as páginas dos

administradores, onde está exibido o formulário CadastroForm, mostrado na Figura 22 e

utilizado a tabela Cadastro do banco de dados SQLite e a página de registro, onde somente os

administradores podem acessar e verificar os registros de quem foi reconhecido, a data e a hora.

Cabe ressaltar que, por se tratarem de páginas onde somente administradores podem ter acesso,

57

foi definida na linha 170 e 183 o comando @login_required, que, como o próprio nome sugere,

faz com que qualquer um que deseje entrar, necessite fazer o login.

 Entretanto, a fim de diminuir o tempo e esforços de uma procura, nas linhas 190 a 204

(Figura 38) através da utilização do SQLAlchemy, foi criado um sistema de consulta, onde os

administradores podem procurar alguém pelo nome, data ou pelos dois ao mesmo tempo.

Figura 38: Sistema de consulta de pessoas

Fonte: Autoria Própria

Figura 39: Definição do número de administradores e função de envio de e-mails para o

recadastramento de senhas

Fonte: modificado de SCHAFER, [201-]e

58

 Linhas 206 a 210: foi implementado um sistema de contagem de administradores, no

qual a opção de se registrar como administrador estará disponível até um certo número de

pessoas se cadastrarem. Após esse número ser atingido, a opção será retirada da página inicial.

 Linhas 216 a 225: foram definidos os seguintes parâmetros do e-mail, que será enviado

ao administrador caso este esqueça a senha: e-mail do administrador (para qual e-mail que a

mensagem será enviada), título, corpo do e-mail e link para o recadastramento da senha.

Figura 40: Página de envio de e-mail e página de recadastramento de senha

Fonte: modificado de SCHAFER, [201-]e

 Por último, porém não menos importante, temos a configuração das páginas

responsáveis por enviar o e-mail de recadastramento da senha e pelo recadastramento em si.

Para a primeira (Linhas 228 a 238), a fim de garantir que o link de recadastramento seja

enviado apenas para o e-mail do administrador em questão, é verificado se o e-mail está

armazenado na tabela User do banco de dados. Em caso afirmativo, o e-mail é enviado e é

possível haver o recadastramento. Em caso negativo, é acusado um erro e o e-mail não é

enviado.

 E com relação a segunda (Linhas 241 a 256), pelo fato de ser apenas de recadastramento,

apresenta apenas os campos para a inserção da nova senha e a confirmação da mesma. Com

59

isso, a senha antiga é substituída pela nova senha na tabela User, e o administrador pode efetuar

o login normalmente.

3.1.5 treinamento.py

Neste arquivo, treinamento.py, é possível encontrar os códigos responsáveis pelo

treinamento do algoritmo apresentado na seção 2.4. Na figura 41 é possível verificar o código

na íntegra.

Figura 41: Código do arquivo treinamento.py

Fonte: Autoria Própria

Linhas 1 a 4: Foram importadas as bibliotecas OpenCV (cv2), responsável pela criação

dos algoritmos mencionados na seção 2.4., Numpy e Pillow (PIL), responsáveis pelas

manipulações das imagens e os, responsável por acessar os diretórios e nomes dos arquivos.

Linhas 6: Foi definido o caminho até o diretório responsável por armazenar as fotos dos

usuários.

Linha 7: Criação do algoritmo de reconhecimento facial LBPH – Local Binary

Patterns Histogram.

Linha 9 e 10: Criação do algoritmo de detecção facial HaarCascade.

60

Linhas 12 a 24: Criação de uma função responsável por acessar os nomes das imagens

no diretório “dataset”, extrair os valores do número fornecido pelo administrador ao usuário

(lembrando que o número extraído é o mesmo número presente no nome das imagens -

User.número.contador.jpg), transformar a imagem para a escala cinza e salvar a localização

das faces detectadas.

Linhas 26 e 27: Treinamento do algoritmo LBPH.

Linha 28: Os resultados advindos do treinamento do algoritmo são salvos em um

arquivo denominado “trainer.yml” dentro do diretório “trainer”.

3.1.6. Templates

Na seção Templates serão apresentados todos os códigos referentes a estrutura das páginas

web/HTML e como as funcionalidades definidas na seção 3.1.4 são implementadas dentro

dessas.

3.1.6.1. layout.html

O código presente no arquivo layout.html é a base de todos os demais códigos HTML,

uma vez que nele é importado o framework Bootstrap, são estruturados os cabeçalhos do

aplicativo, com as opções disponíveis e uma breve explicação do projeto em questão. O objetivo

da escrita de um código que sirva de base é o reaproveitamento, assim, ao invés de escrever

sempre as mesmas linhas para todas as páginas que se deseja utilizar, é possível apenas importar

o layout/código base para a página e alterar o que é desejado. Abaixo, nas Figuras 42 a 45, é

possível verificar o código na íntegra e exemplificações do código.

Figura 42: Código base do arquivo layout.html I

Fonte: modificado de SCHAFER, [201-]a

61

Linhas 1 a 6 e 8 a 10: Códigos de inicialização de um arquivo HTML e utilização do

framework Bootstrap, respectivamente.

Linhas 12 a 19: Importação do arquivo CSS e verificação do nome atribuído a página

web. Caso nenhum nome tenha sido atribuído a página, o nome padrão, CTOS, foi definido.

Linhas 22 a 28: Foi definida a cor do menu do aplicativo (preto) a forma com que o

menu responderá no caso do aplicativo ser utilizado em dispositivo diferente de um computador

(tal resposta do menu é mais conhecida como responsive navbar, do inglês) e o ícone do menu

no caso do aplicativo ser utilizado em dispositivos que não sejam um computado.

Figura 43: Código base do arquivo layout.html II

Fonte: modificado de SCHAFER, [201-]a

62

Figura 44: Exemplificação do menu responsivo (responsive navbar)

Fonte: Autoria Própria

Linhas 29 a 48: São definidas quais as funções estarão presentes no menu. Como visto

na Figura 44, caso não haja administradores cadastrados, aparecerá a opção de se registrar como

administrador. Agora, caso haja o número total de administradores registrados, haverá somente

a opção de fazer login/entrar.

Também é possível verificar nas linhas 34 a 38, que caso o administrador esteja logado,

no lugar de “Entrar” ou “Registrar” haverá as opções “Deletar”, “Registro”, “Usuário” e “Sair”.

A opção “Deletar” irá deletar o registro do administrador do banco de dados User, “Registro”

direcionará o administrador ao banco de registro de pessoas que foram reconhecidas, a opção

“Usuário” direcionará o administrador a página de cadastro de usuários e “Sair” efetuará o

logout do administrador.

63

Figura 45: Código base do arquivo layout.html III

Fonte: modificado de SCHAFER, [201-]a

Linhas 52 a 63: código responsável por mostrar mensagens do tipo “Login Efetuado

com Sucesso” ou “Login fracassado. Por favor tente outro e-mail”.

Linha 64: responsável por exibir o conteúdo das outras páginas, que serão apresentadas

posteriormente.

Linhas 66 a 79: responsável por exibir uma coluna onde é contado sobre o objetivo do

projeto.

3.1.6.2. account.html

O código presente no arquivo account.html é responsável por estruturar em uma página

web, os formulários e funcionalidades que se deseja utilizar na página do administrador,

demonstrados nos códigos acima. Um fato interessante é que todos os códigos presentes nessa

e nas próximas seções, serão inseridos dentro da linha 64 do código layout.html, a fim de,

mesmo em diferentes páginas, ser possível acessar o menu e ver o objetivo do projeto. Das

64

Figuras 46 a 50, apresentadas abaixo, é possível verificar os códigos e as suas respectivas

explicações.

Figura 46: Código account.html I

Fonte: Autoria Própria

Linhas 1 e 2: Fazendo uso do código presente no arquivo layout.html e inserindo dentro

deste código (layout.html) o código do arquivo account.html, respectivamente.

Linhas 3 a 18: Definição de uma seção reservada para a execução do código “deteccao

facial”, demonstrado na Figura 35.

Linhas 23 a 39: É definido a estrutura/estética do formulário utilizado para o cadastro

do nome de usuários por parte do administrador.

Linhas 40 a 52: É definido a estrutura/estética do formulário utilizado para o cadastro

do número atribuído ao usuário por parte do administrador.

Linhas 54 a 56: É estruturado um botão que realizado o cadastro do usuário no banco

de dados “Cadastro”, mostrado na Figura 27.

65

Figura 47: Código account.html II

Fonte: Autoria Própria

Figura 48: Código account.html III

Fonte: Autoria Própria

66

Figura 49: Código account.html IV

Fonte: Autoria Própria

Linhas 59 a 73: Estruturação de um botão responsável por executar a função

“banco_dados”, mostrada na Figura 35.

Figura 50: Código account.html V

Fonte: Autoria Própria

Linhas 74 a 89: Estruturação de um botão responsável por executar o treinamento do

algoritmo de reconhecimento facial, mostrado na Figura 36.

3.1.6.3. tabelas.html

No arquivo tabelas.html será encontrado apenas uma parte dos códigos referentes ao

registro de pessoas que foram reconhecidas pelo aplicativo. Nesta parte do código serão

exibidos as tabelas gerais e os botões para a escolha do filtro, que será tratado mais à frente. Os

códigos e suas respectivas explicações são exibidos da Figuras 51 a 53.

67

Figura 51: Código tabelas.html I

Fonte: Autoria Própria

 Linhas 1 a 7: Inicialização do arquivo HTML, definição do título da página (Registro,

no caso) e importação do arquivo CSS, responsável pelo estilo/design da tabela.

Figura 52: Código tabelas.html II

Fonte: Autoria Própria

 Linhas 10 a 32: Estruturação dos botões responsáveis por permitir que o administrador

selecione, dentre todas as pessoas que foram reconhecidas e as respectivas datas em que foram

reconhecidas, a pessoa e data desejada.

 Linhas 34 a 62: Estruturação da tabela que exibirá os nomes, datas e horas das pessoas

que foram reconhecidas pelo aplicativo.

68

Figura 53: Código tabelas.html III

Fonte: Autoria Própria

3.1.6.4. filtro.html

Neste arquivo serão encontrados os demais códigos referentes ao registro das pessoas

que foram reconhecidas. Mais especificamente, no arquivo filtro.html será discutido a página

de filtro, ou seja, página posterior à escolha de determinada pessoa ou data ou, até mesmo,

ambas na página tabelas.html. Nas Figuras 54 e 55, mostradas abaixo, é possível verificar o

código na íntegra.

Figura 54: Código filtro.html I

Fonte: Autoria própria

Linhas 1 a 7: Da mesma forma que para os demais códigos HTML, o código é

inicializado, é definido um título para a página (no caso, Filtro) e é importado o arquivo CSS

(tabelas.css), responsável pelo design e estilo da tabela.

69

Figura 55: Código filtro.html II

Fonte: Autoria Própria

Linhas 8 a 37: Dependendo do que foi selecionado nos botões na página tabelas.html,

serão exibidos diferentes resultado na tabela da página filtro.html. Para o caso de o

administrador selecionar apenas o nome de uma pessoa, na coluna “Nome” será exibido apenas

o nome da pessoa e nas colunas “Data” e “Hora” serão exibidas as diferentes datas e horas na

qual a pessoa escolhida foi reconhecida. No caso de ser selecionado apenas uma data, serão

exibidos os diferentes nomes e horas de todas as pessoas que foram reconhecidas no dia

especificado. E por último, no caso de ser especificado o nome e data de uma pessoa, serão

exibidos os diferentes horários em que a pessoas selecionada foi reconhecida no dia

selecionado.

3.1.6.5. home.html

No arquivo home.html é possível encontrar os códigos relacionados a página inicial do

aplicativo. Tanto os administradores quanto os usuários têm acesso a está página e nela está

contido um texto explicativo do autor do projeto, o objetivo do mesmo e o algoritmo de

reconhecimento facial.

Tanto aqueles que forem cadastrados quanto os que não forem, poderão utilizar o

reconhecimento facial. Entretanto, aqueles que não estiverem cadastrados na tabela “Cadastro”

70

do banco de dados serão identificados como “unknown”, ou “desconhecido” em português. Na

Figura 56, abaixo, é possível verificar o código do arquivo home.html na íntegra:

Figura 56: Código home.html

Fonte: Autoria Própria

Linha 1: Utilização do arquivo layout.html, a fim de gerar o mesmo layout das demais

página do aplicativo (utilização de um padrão para todas as páginas)

Linhas 3 a 14: Definição de um bloco de texto explicando quem é o criador do aplicativo

e o objetivo do mesmo.

Linhas 15 a 25: Estruturação de um botão responsável por executar a função

“vídeo_feed”, mostrada na Figura 35.

3.1.6.6. register.html

No arquivo register.html é possível encontrar todos os códigos referentes a página de

cadastro dos administradores. Tal página, como foi dito anteriormente, não ficará disponível

para todos os usuários do aplicativo, mas sim, apenas para os n primeiros usuários, sendo n o

número de administradores desejados. Nas figuras 57 a 59, mostradas abaixo, é possível

verificar o código do arquivo na íntegra, seguido por suas devidas explicações.

71

Figura 57: Código register.html I

Fonte: Autoria Própria

Linha 1: Da mesma forma que foi explicado anteriormente, é implementado o código

layout.html a fim das diferentes páginas do aplicativo possuírem o mesmo layout/estilo.

Linha 8 a 20: Estruturação do campo “nome_administrador” do formulário

“RegistrationForm” na página web. Neste Campo o administrador pode definir um nome pelo

qual será reconhecido.

Figura 58: Código register.html II

Fonte: autoria Própria

Linhas 21 a 33: Estruturação do campo “email_administrador” do formulário

“RegistrationForm” na página web. Neste campo o administrador irá inserir um e-mail pelo

qual também será reconhecido.

72

Figura 59: Código register.html III

Fonte: Autoria Própria

Linhas 34 a 46: Estruturação do campo “senha_administrador” do formulário

“RegistrationForm” na página web. Neste Campo o administrador pode definir uma senha com

a qual efetuará o login posteriormente.

Figura 60: Código register.html IV

Fonte: Autoria Própria

Linhas 47 a 59: Estruturação do campo “confirmar_senha” do formulário

“RegistrationForm” na página web. Neste campo o administrador deve confirmar a senha

fornecida no campo “senha_administrador” (caso as senhas sejam diferentes, o sistema irá

acusar um erro).

Linhas 61 a 63: Definição de um botão responsável por enviar os campos mostrados nas

Figuras 57 a 60 para o banco de dados User.

73

3.1.6.7. login.html

Neste arquivo é possível encontrar todos os códigos referentes a estruturação da página

web de login, a qual estará apenas disponível após o cadastramento de todos os administrados.

Das Figuras 61 a 63 é possível verificar o código na íntegra e suas respectivas explicações.

Figura 61: Código login.html I

Fonte: Autoria Própria

Linha 1: Implementação do código layout.html a fim das diferentes páginas do

aplicativo possuírem o mesmo layout/estilo.

Linhas 8 a 20: Estruturação do campo que receberá o e-mail do administrador.

Figura 62: Código login.html II

Fonte: Autoria Própria

Linhas 21 a 33: Estruturação do campo que receberá a senha cadastrada pelo

administrador.

74

Figura 63: Código login.html III

Fonte: Autoria Própria

Linhas 35 a 37: Estruturação de um botão responsável por verificar se o e-mail e senha

informados estão realmente presentes na tabela “User” do banco de dados. Caso positivo, o

login é efetuado. Caso negativo, é acusado um erro.

Linhas 38 a 40: Disponibilização de um link para o recadastramento da senha, caso

necessário.

3.1.6.8. reset_request.html

No arquivo reset_request.html é possível encontrar os códigos referentes a criação da

página web responsável por enviar o e-mail de recadastro de senha do administrador. Na Figura

62 é possível verificar o código na íntegra.

 Linha 1: Utilização do arquivo layout.html para a criação de design/estilos iguais para

as páginas do aplicativo.

 Linha 6 a 21: Estruturação de um campo de preenchimento, no qual o administrador que

esqueceu a senha deve inserir o seu e-mail de cadastro. Caso o e-mail informado pelo

administrador esteja contido na tabela “User”, o e-mail poderá ser enviado. Caso o e-mail

informado no campo não esteja contido na tabela, será acusado um erro e o e-mail não poderá

ser enviado.

 Linhas 22 a 24: Estruturação do botão responsável por enviar o e-mail para o

recadastramento da senha.

75

Figura 64: Código reset_request.html

Fonte: Autoria Própria

3.1.6.9. reset_token.html

No arquivo reset_token.html é possível encontrar os códigos referentes a estruturação

da página web responsável pelo recadastramento da nova senha do administrador. Nas Figuras

65 e 66, é possível verificar o código na íntegra.

 Linhas 7 a 20: Estruturação de um campo no qual os administradores podem inserir a

nova senha desejada.

Linhas 21 a 33: Estruturação do campo de confirmação da nova senha, no qual os

administradores devem inserir a mesma senha que foi escrita/especificada no campo da nova

senha. Caso a senha e a confirmação da senha sejam diferentes, será acusado um erro.

Linhas 35 a 37: Estruturação do botão responsável pela troca da senha antiga pela nova

senha na tabela “User”.

76

Figura 65: Código reset-token.html I

Fonte: Autoria Própria

Figura 66: Código reset_token.html II

Fonte: Autoria Própria

3.1.7. Static

Nesta seção serão tratados os códigos relacionados ao design da página. Enquanto os

códigos HTML são responsáveis pela estruturação da página em si, é possível fazer uso dos

códigos CSS para a criação de melhores design e de uma maneira mais fácil.

77

3.1.7.1. main.css

Neste arquivo e possível encontrar os atributos utilizados para a criação dos estilos das

páginas web, que não são derivados do framework Bootstrap. Nas Figuras 67 e 68 é possível

verificar os atributos na íntegra.

Figura 67: Atributos do código main.css I

Fonte: Autoria Própria

Linhas 1 a 4: Definição da cor da página web (código hexadecimal #fafafa – espécie

de branco) e da margem superior que há entre o início da página e o início dos conteúdos.

Linhas 6 a 8: Definição da cor #000000 (preto) para o menu responsivo, apresentado na

Figura 43.

Linhas 10 a 12: Definição da cor #cbd5db (espécie de branco com cinza) para os itens

apresentado no menu responsivo, apresentado na Figura 44.

Linhas 15 a 17: Estruturação da mudança da cor #cbd5db para #fffff (branco) quando o

mouse passar por cima de um dos itens do menu responsivo.

78

Figura 68: Atributos do código main.css II

Fonte: Autoria própria

Linhas 19 a 31: Definição dos atributos dos blocos de textos e formulário, como: cor de

fundo (background – #fffff – branco), distanciamento do texto/botões até as bordas (padding),

cor e raio das bordas (border e border-radius) e distanciamento para a bloco/formulário abaixo

(margin-bottom).

Linhass 33 a 36: Estruturação da mudança de cor, azul para preto, do título do bloco de

texto ou formulário quando o mouse passar por cima.

3.1.7.2. tabelas.css

Neste arquivo é possível encontrar os atributos utilizados para a estruturação das tabelas

de registro de reconhecimento, apresentadas na seção 3.1.6.3. Nas Figuras 69, 70 e 71 é possível

verificar os atributos na íntegra.

Figura 69: Atributos do código tabelas.css I

Fonte: Autoria própria

79

Linhas 1 a 8: Definição do tamanho (35px), cor (#FFFFFF – branco), formato

(maiúsculo), posição (centralizado), margem para objeto abaixo (15px) e fonte (Times New

Roman) do título que aparecerá quando o administrador abrir a página de registro.

Figura 70: Atributos do código tabelas.css II

Fonte: Autoria Própria

Linhas 10 a 14: Definição da largura da tabela, no caso 100% da largura da página,

definição da divisão entre as colunas (divisão igualitária – fixed) e fonte que será utilizada,

Times New Roman.

 Linhas 16 a 19: Definição da cor do cabeçalho de registro (cinza claro) e fonte utilizada,

Times New Roman.

 Linhas 21 a 27: Definição da altura (height), preenchimento (overflow-x), distância até

o cabeçalho (margin-top), borda (border) e fonte (font-family) da tabela que irá exibir os dados.

Cabe ressaltar que o atributo preenchimento diz respeito a quantidade de linhas que é possível

exibir dentro da altura estabelecida. Assim, ao fazer uso do auto no atributo preenchimento, o

número de linhas exibidas, nunca ultrapassará os limites de altura da tabela.

Linhas 29 a 36: Definição das margens, posição (centralizado), tamanho (14px), cor

(#FFFFFF – branco), formato (maiúsculo) e fonte (Times New Roman) das palavras que estarão

no cabeçalho da tabela, no caso “Nome”, “Data” e “Hora”.

 Linhas 38 a 45: Definição da margem, posição (centralizado), tamanho (14px), cor

(#FFFFFF – branco), borda inferior (rgba(255, 255, 255, 0.1 - cinza escuro)) e fonte (Times

New Roman).

80

Figura 71: Atributos do código tabelas.css III

Fonte: Autoria Própria

3.1.8. Images

Na pasta “Images” localizada dentro do diretório “Static” é possível encontrar todas as

imagens utilizadas na criação do aplicativo. No caso em específico, a única imagem utilizada

foi a do logo da Universidade de São Paulo, “USP.svg”, o qual é presente na grande maioria

das páginas do aplicativo.

3.2. Dataset

No diretório “Dataset” é possível encontrar todas as imagens dos usuários que serão

utilizadas para o treinamento do algoritmo de reconhecimento. As imagens, como mencionado

anteriormente na seção 3.1.4., são armazenadas da seguinte forma: User.número.contador, O

nome “User” é utilizado apenas para identificar que as imagens são referentes aos usuários do

aplicativo, enquanto o “número” é referente ao número atribuído a pessoa pelo administrador

no formulário “CadastroForm” e o “contador” é referente a número da imagem dentre as

diversas imagens que foram tiradas, como 3ª imagem de 40 que foram tiradas.

3.3. Trainer

No diretório “Trainer” é possível encontrar o arquivo “trainer.yml”, no qual são

armazenados os histogramas gerados pelo algoritmo descrito na seção 2.4.4.3. Juntamente com

os histogramas é gerado um índice ao fim do arquivo identificando qual histograma é de qual

81

pessoa. Nesse momento que o “número” estipulado pelo administrador é importante, pois cada

histograma será identificado pelo número atribuído.

3.4. run,py

Neste arquivo é possível encontrar o código responsável por executar o aplicativo e

todas as demais funcionalidades. O código pode ser verificado na Figura 72.

Figura 72: Código run.py

Fonte: Autoria Própria

3.5. Aplicativo

Desta subseção em diante, serão exibidas todas as páginas que compõe o aplicativo,

como também, o sistema de detecção facial e o sistema de reconhecimento facial.

3.5.1. Páginas

3.5.1.1. home.html

Ao inicializar o aplicativo, a primeira página exibida será a página web “home.html”.

Todos os usuários têm acesso a ela e, como dito anteriormente, até que todos os administradores

não efetuem o devido cadastro, a opção de se cadastrar como um administrador será exibida a

qualquer um que utilizar o aplicativo. Entretanto, após o cadastro dos administradores, a opção

de cadastro será substituída pela opção de login apenas.

Nela também é possível encontrar um breve resumo do aplicativo, sua finalidade,

motivo do desenvolvimento e a função de reconhecimento fácil, a qual será mostrada mais à

frente. Nas Figuras 73 e 74, é possível verificar as duas variações da página “home.html”.

82

Figura 73: Página “home.html” sem administradores cadastrados

Fonte: Autoria Própria

Figura 74: Página “home.html” com administradores cadastrados

Fonte: Autoria Própria

3.5.1.2. register.html

Na página register.html é possível encontrar o formulário de cadastro do administrador.

Nela o administrador deve inserir um nome, e-mail, senha e confirmação de senha. Na Figura

75 é possível encontrar um exemplo da página de cadastramento de administradores.

83

Figura 75: Página “register.html” para o cadastramento de administradores

Fonte: Autoria Própria

3.5.1.3. login.html

Na página login.html será encontrado o formulário para o administrador efetuar login

no aplicativo. Com o login efetuado, o administrador terá acesso as demais funcionalidades do

aplicativo, como cadastramento de pessoa no banco de dados, treinamento do algoritmo de

reconhecimento e acesso ao registro de pessoas que foram detectadas. Na figura 76 é possível

verificar a página de login.

Figura 76: Página de login de administradores

Fonte: Autoria Própria

84

3.5.1.4. account.html

Na página “account.html” é possível encontrar a funcionalidade de detecção facial (para

ajuste da câmera), a do cadastro de pessoas no banco de dados (o administrador deve fornecer

um nome e número para cada pessoa), a captura de imagens para o treinamento do algoritmo

de reconhecimento e o próprio treinamento do reconhecimento. Na Figura 77, é possível

verificar a página “account.html”.

Figura 77: Página “account.html” que estará disponível a todos os administradores

Fonte: Autoria Própria

3.5.1.5. tabelas.html e filtro.html

Na página “tabelas.html” é possível encontrar os registros de pessoas que foram

reconhecidas. Neste registro consta o nome, dia e hora em que a pessoa foi reconhecida.

Também é possível encontrar os dois filtros que serão utilizados na página “filtro.html”, para

selecionar, dentre o banco de dados, uma pessoa ou dia específico. Nas Figuras 78 e 79,

mostradas abaixo, é possível verificar o funcionamento da página “tabelas.html”, com dois

nomes “Matheus” e “Christopher”, e da página “filtro.html” com apenas o nome “Matheus”.

85

Figura 78: Página “tabelas.html”

Fonte: Autoria Própria

Figura 79: Página “filtro.html” com apenas o nome “Matheus” selecionado

Fonte: Autoria Própria

3.5.1.6. reset_request.html e reset_token.html

A fim de evitar que os administradores fiquem permanentemente bloqueados ao

esquecer suas senhas, a página “reset_request.html” e “reset_token.html” foram criadas. Como

explicado nas seções anteriores, a página “reset_request.html” é responsável por enviar um e-

mail ao administrador, com instruções um link, que redirecionará o administrador para a página

“reset_token.html”.

 Na página “reset_token.html” o administrador pode escolher uma nova senha e necessita

apenas confirma-la digitando novamente. Após isso, estará apto a fazer o login novamente e

86

utilizar as funcionalidades do aplicativo. Nas Figuras 80 e 81, é possível verificar as páginas

“reset_request.html” e “reset_token.html”, respectivamente.

Figura 80: Página “reset_request.html”

Fonte: Autoria Própria

Figura 81: Página “reset_token.html”

Fonte: Autoria Própria

3.5.2 Detecção e Reconhecimento facial

Nesta subseção serão exibidos, na prática, a atuação do algoritmo de detecção e

reconhecimento facial. Cabe ressaltar que a parte teórica, que explica o funcionamento dos

algoritmos de detecção e reconhecimento, foram descritos na seção 2.4.

87

Na Figuras 82 e 83 é possível verificar, na prática, as atuações do detector facial e do

reconhecimento facial.

Figura 82: A esquerda é apresentado o detector facial e a direita o reconhecimento facial

Fonte: Autoria Própria

Figura 83: Reconhecimento facial com duas pessoas distintas

Fonte: Autoria Própria

Para verificar a atuação na prática da detecção e reconhecimento facial, assim como o

funcionamento integral do aplicativo, é possível acessar o Github a seguir: MChitan77/TCC-

Videos: Vídeos apresentados na defesa de Trabalho de Conclusão de Curso de Matheus de

Mendonça Chitan (github.com), onde estarão disponíveis 2 vídeos.

https://github.com/MChitan77/TCC-Videos
https://github.com/MChitan77/TCC-Videos
https://github.com/MChitan77/TCC-Videos

88

4. DISCUSSÃO DE RESULTADOS

É importante ressaltar que o aplicativo desenvolvido, juntamente com a detecção e

reconhecimento facial, está sendo executado em um notebook com processador Intel(R)

Core(TM) i7-7500U CPU @ 2.70GHz 2.90 GHz e 16GB de RAM instalada. Com isso, é

possível discutir alguns dos resultados obtidos, principalmente relacionados a detecção facial e

reconhecimento facial.

4.1. Detecção facial

O algoritmo de detecção utilizado, Haar Cascade, pelo fato de ter sido um dos primeiros

algoritmos desenvolvidos para a detecção de objetos, apresenta suas limitações. Mais

especificamente, com relação a detecção facial, um dos problemas que deve ser levado em

consideração, quando utilizado o algoritmo, é a inclinação das faces na imagem. Em outras

palavras, faces que não estejam na posição vertical ou muito próxima dessa, não serão

detectadas ou haverá uma detecção muito precária. Nas Figuras 84 e 85, é possível verificar a

influência da inclinação da face na detecção.

Figura 84: Influência da inclinação na detecção facial com a utilização do algoritmo Haar

Cascade A

Fonte: Autoria Própria

89

Figura 85: Influência da inclinação na detecção facial com a utilização do algoritmo Haar

Cascade B

Fonte: Autoria Própria

Da Figura acima é possível verificar que inclinações na face impossibilitam que o

algoritmo seja executado corretamente. Entretanto, apesar de apresentar tal problema, a

utilização do algoritmo Haar Cascade ainda é grande valia, uma vez que em comparação com

algoritmos mais modernos, que garantem uma maior taxa de detecção, este apresenta uma maior

velocidade de processamento. Assim, em aplicações em que haja a possibilidade das

pessoas/usuários pararem na frente da câmera de captura, como é o caso, a utilização do

algoritmo Haar Cascade é grande utilidade.

E por último, a escolha do algoritmo Haar Cascade foi mediante a velocidade de

processamento que este possui, pela não necessidade de algoritmos mais robusto para a

aplicação em questão e pela facilidade de implementação dentro do código Python.

4.2. Reconhecimento facial

Com relação ao reconhecimento facial é possível verificar pela Figura 82, que foi

apresentado um valor de 73% para a semelhança entre a imagem captura naquele instante e as

imagens armazenadas no diretório “Dataset”. Entretanto, há uma grande dificuldade em

estabelecer um número médio para a porcentagem geral de reconhecimento, uma vez que

diferentes fatores podem interferir no cálculo.

A fim de explicar melhor, é importante enfatizar que o algoritmo de reconhecimento

facial utilizado, LBPH – Local Binary Patterns Histogram, diferentemente do que muitos

entendem ou pensando quando o termo “Reconhecimento Facial” é utilizado, não é baseado em

uma inteligência artificial ou apresenta um aprendizado de máquina.

90

O Algoritmo utilizado se baseia em Visão Computacional, trabalhando diretamente com

a manipulação das imagens fornecidas. Assim, o algoritmo é fortemente influenciado pelas

condições das imagens fornecidas, como: brilho, sombra, contraste, cor, saturação, entre outras.

Isso faz com que as condições ao redor da pessoa, tanto na captura da imagem quanto na hora

do reconhecimento, influenciem na porcentagem de semelhança.

Exemplo: Supondo que no momento da captura para o banco de dados, esteja ensolarado

e quando a pessoa foi utilizar o reconhecimento facial esteja chovendo. É muito provável que

a porcentagem de semelhança seja em torno de 45-50% (tendo em mente que 75% de

semelhança é extremamente alto para o algoritmo). Agora, supondo que esteja ensolarado no

momento do reconhecimento, é bem provável que a porcentagem chegue a 65-75%. Também

é importante ressaltar que o reconhecimento facial é executado mais de uma vez por segundo e

que está constantemente comparando a foto captura pela câmera do computador (por exemplo)

com todas as fotos armazenadas no diretório “Dataset”. Assim, a porcentagem está

constantemente se alterando.

Outro fator que é consequência direta do algoritmo utilizado ser baseado em imagens e

manipulação das mesmas, é a questão de fraudes. Caso alguém utilize uma máscara que se

assemelhe a alguma das faces que esteja presente no banco de imagens, no diretório “dataset”,

é muito provável que o algoritmo irá assumir que a máscara seja realmente a pessoa em questão.

Dessa forma, pelo que foi discutido acima, é uma difícil tarefa estimar um número médio

para a porcentagem de semelhança entre a foto capturada pela câmera e as fotos armazenadas

no diretório “Dataset” e evitar fraudes. Ainda mais quando aplicativo estiver sendo utilizado

para o reconhecimento de mais de uma pessoa/usuário.

4.3. Processamento

Como dito anteriormente, o tratamento e processamento de imagens é custoso

computacionalmente, uma vez que diversas funções estão sendo executadas simultaneamente.

Um exemplo que pode ser dado, é da porcentagem da CPU que está sendo utilizada ao executar

a função de detecção facial do aplicativo, mostrada na figura 86.

91

Figura 86: Porcentagem da CPU que está sendo utilizada ao executar a função de detecção

facial do aplicativo

Fonte: Autoria Própria

 Da Figura é possível verificar que 67,5% da CPU está sendo utilizada para a execução

da função de detecção facial. Tal valor é relativamente alto, ainda mais para um computador

Intel Core i7 de 7ª geração com 16 GB de RAM.

 Assim, a fim de reduzir o custo computacional/porcentagem da CPU utilizada para a

execução do aplicativo, seria de grande interesse a utilização de uma unidade de processamento

gráfico, ou GPU, como também são conhecidas, para o processamento das imagens e atividades

relacionadas a elas. Tais unidades são especialmente desenvolvidas para a administração e

controle de funções de exibição de vídeo.

92

5. CONCLUSÃO

Considerando o rápido avanço da tecnologia e a grande necessidade de propor soluções

inovadoras para as atividades de trabalho, a automação de tarefas repetitivas e cansativas, de

modo que não necessitem da supervisão humana, vem ganhando espaço e sendo utilizada de

forma crescente em nível mundial. Desde simples processos de automações para a obtenção de

dados e informações até complexos desenvolvimentos de redes neurais para sistemas de

orientação e controle de atuadores do mundo real.

Tais automações, além de proporcionarem ao ser humano conforto, uma vez que tais

tarefas podem ser cansativas e repetitivas, possibilitam uma melhor otimização de tempo e

recursos, fazendo com que diferentes aspectos possam ser tratados e trabalhos dentro de uma

instituição.

O presente trabalho teve como objetivo propor e desenvolver um desses sistemas de

automação, mais especificamente, um aplicativo de detecção e reconhecimento facial que possa

ser implementado em estabelecimentos e instituições como um meio de auxílio à segurança,

com potencial para ser adotado pela Escola de Engenharia de Lorena, auxiliando no registro e

controle de entrada e saída de pessoas no campus universitário.

Com base nos resultados e discussões apresentadas, foi verificado que o aplicativo

desenvolvido cumpriu com o esperado, podendo ser utilizado na prática, caso fosse desejado e

se houvesse pequenas mudanças, como sugeridas na seção 4.

93

REFEREÊNCIAS

15 Most Colourful Animals. PopUp Painting. [S.I.]: mar, 2018. Disponível em:
https://popuppainting.com/2018/03/15-colourful-animals/. Aceso em: 03 set. 2021

ACDSystem. Canvas Tips and Techniques: Understanding color channesl. [S.I.]:
ACDSystem, [2003?]. 14 p. Disponível em:
http://files.acdsystems.com/english/support/canvas/canvas-software-downloads/pdf-
tutorials/color_channels.pdf. Acesso em: 03 set. 2021.

Anaconda. Anaconda.Documentation. [S.I.]: Anaconda, 2021. Disponível em:
https://docs.anaconda.com/anaconda/index.html. Acesso em 31 ago. 2021.

BBC. Facebook settles facial recognition dispute. [S.I.]: BBC, 2020. Disponível em:
https://www.bbc.com/news/technology-51309186. Acesso em: 22 out. 2021.

Bootstrap. The most popular HTML, CSS and JSlibrary in the world. [S.I.]: Bootstrap,
[201-]. Disponível em: https://getbootstrap.com/. Acesso em: 31 ago. 2021

Businesswire: A Berkshire Hathaway Company. IDEMIA’s Facial Recognition Ranked #1
in NIST’s Latest FRVT Test. [S.I.]: Businesswire, 2021. Disponível em:
https://www.businesswire.com/news/home/20210406005123/en/IDEMIA%E2%80%99s-
Facial-Recognition-Ranked-1-in-NIST%E2%80%99s-Latest-FRVT-Test. Acesso em: 23 out.
2021.

CARBONNELLE, Pierre. PYPL PopularitY of Programming Language. [S.I.]:
CARBONNELLE, 2021. Disponível em: https://pypl.github.io/PYPL.html. Acesso em: 31
ago. 2021.

CHOKSHI, Niraj. Facial Recognition’s Many Controversies, From Stadium Surveillance
to Racist Software. Nova York, NY: CHOKSHI, 2019. Disponível em: https://www-
nytimes-com.translate.goog/2019/05/15/business/facial-recognition-software-
controversy.html?_x_tr_sl=en&_x_tr_tl=pt&_x_tr_hl=pt-BR&_x_tr_pto=nui. Acesso em: 22
out. 2021.

CHM – Computer History Museum. Guido Van Rossum: For the creation and evolution of
the Python programming language and for leadership of its community. Mountain View,
CA: CHM, 2018. Disponível em: https://computerhistory.org/profile/guido-van-rossum/.
Acesso em: 31 ago. 2021.

GALILEU. Concurso divulga 10 das melhores fotos da natureza selvagem de 2020. [S.I.]:
GALILEU, 2020. Disponível em: https://revistagalileu.globo.com/Ciencia/Meio-
Ambiente/noticia/2020/09/concurso-divulga-10-das-melhores-fotos-da-natureza-selvagem-de-
2020.html. Acesso em: 01 set. 2021.

Flask-SQLAlchemy. FLask-SQLAlchemy Documentation (2.x): Select, Inser, Delete.
[S.I.]: Flask-SQLAlchemy, 2010 Disponível em: https://flask-
sqlalchemy.palletsprojects.com/en/2.x/queries/#querying-records. Acesso em: 31 ago. 2021.

94

GAY, Jeremy. How to look after a Yemen chameleon. Manchester, UK: SwellReptiles,
2020 Disponível em: https://www.reptiles.swelluk.com/blog/how-to-look-after-a-yemen-
chameleon/. Acesso em: 02 set. 2021.

HARDING, David. Facial Recognition: When Convenience and Privacy Collide. [S.I.]:
HARDING, 2019. Disponível em: https://www.securitymagazine.com/articles/90533-facial-
recognition-when-convenience-and-privacy-collide. Acesso em: 23 out. 2021.
JET BRAINS. PyCharm, O IDE Python para desenvolvedores profissionais. [S.I.]: JET
BRAINS, [201-]. Disponível em: https://www.jetbrains.com/pt-br/pycharm/. Acesso em: 31
ago. 2021.

MARR, Bernard. Facial Recognition Technology: Here Are The Important Pros And
Cons. [S.I.]: MARR, 2019. Disponível em:
https://www.forbes.com/sites/bernardmarr/2019/08/19/facial-recognition-technology-here-
are-the-important-pros-and-cons/?sh=c8de57714d16. Acesso em: 22 out. 2021.

NEC. A brief history of Facial Recognition. Nova Zelândia: NEC, 2020 Disponível em:
https://www.nec.co.nz/market-leadership/publications-media/a-brief-history-of-facial-
recognition/. Acesso em: 25 out. 2021.

NIST. Face Recognition Grand Challenge (FRGC). Gaithersburg, MD: NIST, 2010.
Disponívem em: https://www.nist.gov/programs-projects/face-recognition-grand-challenge-
frgc. Acesso em: 22 out. 2021.

NIST. Face Recognition Vendor Test (FRVT): Prior Tests and Activities. Gaithersburg,
MD: NIST, 2010. Disponível em: https://www.nist.gov/programs-projects/face-recognition-
vendor-test-frvt. Acesso em: 23 out. 2021.

Numpy. What is NumPy?.[S.I.]: Numpy, 2021. What is NumPy?. Disponível em:
https://numpy.org/doc/stable/user/whatisnumpy.html#who-else-uses-numpy. Acesso em: 31
ago. 2021.

OpenCV - Open Source Computer Vision. About OpenCV. [S.I.]: OpenCV, [200-].
Disponível em: https://opencv.org/about/. Acesso em: 01 set. 2021.

OpenCV - Open Source Computer Vision. Color Conversion. [S.I.]: OpenCV, [201-] .
Disponível em: https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html. Acesso
em: 03 set. 2021.

OpenCV - Open Source Computer Vision. Face Recognition with OpenCV. [S.I.]: OpenCV
[201-]. Disponível em: https://docs.opencv.org/3.4/da/d60/tutorial_face_main.html. Acesso
em: 08 set. 2021.

Open Source Initiative. Frequently Answered Questions: What is "Open Source"
software?. [S.I.]: Open Source Initiative, [entre 1995 e 2005]. Disponível em:
<https://opensource.org/faq#osd>. Acesso em: 31 ago. 2021.

Pallets. Flask Documentation (2.0.x). [S.I.]: Pallets. 2010. Disponível em:
https://flask.palletsprojects.com/en/2.0.x/. Acesso em: 31 ago. 2021.

95

PETROU, Maria; PETROU, Costa. Image Processing: The Fundamentls. 2ª edição. Reino
Unido: John Wiley and Sons Ltd, 2010. 794 p.

Python Software Foundation. What is Python? Executive Summary. [S.I.]: Python Software
Foundation, [2001]. Disponível em: https://www.python.org/doc/essays/blurb/. Acesso em: 31
ago. 2021

ROLL, Lara C. Worktech Academy. How the pandemic has given a boost to workplace
automation: The ‘next normal’ in the workplace is set to accelerate company moves
towards greater automation. Lara Roll gathers the evidence. Londres, UK: ROLL, 2019.
Disponível em: https://www.worktechacademy.com/how-the-pandemic-has-given-a-boost-to-
workplace-automation/. Acesso em: 22 out. 2021.

ROSEBROCK, Adrian. Face Recognition with Local Binary Patterns (LBPs) and
OpenCV. [S.I.]: Pyimagesearch, 2021. Disponível em:
https://www.pyimagesearch.com/2021/05/03/face-recognition-with-local-binary-patterns-
lbps-and-opencv/. Acesso em: 20 nov. 2021

ROSEBROCK, Adrian. Local Binary Patterns with Python & OpenCV. [S.I.]:
Pyimagesearch, 2015. Disponível em: https://www.pyimagesearch.com/2015/12/07/local-
binary-patterns-with-python-opencv/. Acesso em: 08 set. 2021.

SCHAFER, Corey. Python Flask Tutorial: Full-Featured Web App Part 2 – Templates. [S.I.]:
SCHAFER, [201-]a. 1 vídeo (31 min.). Disponível em:
https://www.youtube.com/watch?v=QnDWIZuWYW0&list=PL-
osiE80TeTs4UjLw5MM6OjgkjFeUxCYH&index=2. Acesso em 31 jul; 2021.

SCHAFER, Corey. Python Flask Tutorial: Full-Featured Web App Part 3 - Forms and User
Input. [S.I.]: SCHAFER, [201-]b. 1 vídeo (48 min). Disponível em:
https://www.youtube.com/watch?v=UIJKdCIEXUQ&list=PL-
osiE80TeTs4UjLw5MM6OjgkjFeUxCYH&index=3. Acesso em: 1 ago. 2021.

SCHAFER, Corey. Python Flask Tutorial: Full-Featured Web App Part 4 - Database with
Flask-SQLAlchemy. [S.I.]: SCHAFER, [201-]c. 1 vídeo (29 min). Disponível em:
https://www.youtube.com/watch?v=cYWiDiIUxQc&list=PL-
osiE80TeTs4UjLw5MM6OjgkjFeUxCYH&index=4. Acesso em: 3 ago. 2021

SCHAFER, Corey. Python Flask Tutorial: Full-Featured Web App Part 6 - User
Authentication. [S.I.]: SCHAFER, [201-]d. 1 vídeo (47 min). Disponível em:
https://www.youtube.com/watch?v=CSHx6eCkmv0&list=PL-
osiE80TeTs4UjLw5MM6OjgkjFeUxCYH&index=6. Acesso em: 4 ago. 2021.

SCHAFER, Corey. Python Flask Tutorial: Full-Featured Web App Part 10 - Email and
Password Reset. [S.I.]: SCHAFER, [201-]e. 1 vídeo (47 min). Disponível em:
https://www.youtube.com/watch?v=vutyTx7IaAI&list=PL-
osiE80TeTs4UjLw5MM6OjgkjFeUxCYH&index=10. Acesso em: 5 ago. 2021.

SERENGIL, Sefik Ilkin. A Beginner’s Guide to Face Recognition with OpenCV in
Python. [S.I.]: Sefik Ilkin Serengil, 2020. Disponível em: https://sefiks.com/2020/07/14/a-
beginners-guide-to-face-recognition-with-opencv-in-python/. Acesso em: 10 set. 2021.

96

SINFIC. Reconhecimento Facial: um Pouco de História e Principais Abordagens.
Portugal: SINFIC, 2008. Disponível em:
http://www.sinfic.pt/SinficWeb/displayconteudo.do2?numero=24923. Acesso em: 22 out.
2021.

SOUZA, Leonardo. Veja homenagens para Ayrton Senna, maior ídolo na Formula 1. São
Paulo, SP: R7, 2019. Disponível em: https://esportes.r7.com/automobilismo/fotos/veja-
homenagens-para-ayrton-senna-maior-idolo-na-formula-1-03052019#/foto/1. Acesso em 03
set. 2021.

SQLALchemy. The Python SQL Toolkit and Object Relational Mapper. [S.I.]:
SQLALchemy, [20--]. Disponível em: https://www.sqlalchemy.org/. Acesso em: 31 ago.
2021.

SQLite Consortium. What Is SQLite?. [S.I.]: SQLite, [entre 1995 e 2005]. Disponível em:
https://www.sqlite.org/index.html. Acesso em: 01 set. 2021.

SYMANOVICH, Steve. What is facial recognition? How facial recognition works. [S.I.]:
SYMANOVICH, 2021. Disponível em: https://us.norton.com/internetsecurity-iot-how-facial-
recognition-software-works.html. Acesso em: 21 out. 2021.

TASKIRAN Murat, KAHRAMAN Nihan, ERDEM Cigdem Eroglu. Face recognition: Past,
present and future (a review), Digital Signal Processing, Volume 106, 2020, 102809, ISSN
1051-2004. Disponível em:
https://www.sciencedirect.com/science/article/pii/S1051200420301548. Acesso em: 18 nov.
2021.

VIOLA, Paul; JONES, Michael. Rapid Object Detection using a Boosted Cascade of
Simple Features. In: IEEE computer society conference on computer vision and pattern
recognition, 2001, Kauai, HI. Proceedings... Kauai: 2001. 1.v. p. 511-518.

W3Schools. Introduction to SQL. [S.I.]: W3School, [200-] Disponível em:
https://www.w3schools.com/sql/sql_intro.asp. Acesso em: 31 ago. 2021.

